
Earley Parsing with A* search

Yufei Liu Pratyai Mazumder
ETH Zürich

{yufliu, pmazumder} @inf.ethz.ch

Paul He
ETH Zürich

paulhe1@ethz.ch

Abstract

Earley’s algorithm can parse unrestricted
context-free grammar inO(N3|G||P|) runtime.
In this paper, we reformulate Earley’s algo-
rithm as a search problem and introduce the
application of A* heuristics to enhance the ef-
ficiency of the parser. Our approach leverages
the strength of A* search to prune the search
space effectively, thus accelerating the parsing
procedure while still being complete and finite.
We provide a detailed description of our formu-
lation, discuss the impact of different heuristics
on the algorithm’s performance, and present
empirical results to demonstrate the improve-
ments achieved. 1

1 Introduction

Earley Parsing was the first algorithm to directly
parse an input with length N under an unrestricted
context-free grammar in O(N3), and unabmigious
grammars in O(N2). Unlike other chart parsers
such as CKY (Younger, 1967; Kasami, 1966), Ear-
ley’s algorithm parses the input from left to right,
filling in the chart top-down (goal driven). Lets con-
sider the objective of Earley’s algorithm as a search
problem, where we want one possible parse of the
input string, or declare that it is not recognized.

In Earley’s algorithm, an item represents a par-
tially completed parse tree. We start the search
from a start item, and explore new items iteratively
until the goal item is found. As soon as we have
found the goal item, we can immediately produce
one possible parse tree. Unless we need other parse
trees as well, we do not need to explore further.
This begs the question whether we can find a path
from a start item to a goal item quickly? Or even,
can we find an optimal path from a start item to
a goal item quickly? For a WCFG, our search

1� https://github.com/Hepaul7/Astar_
earley

problem still remains the same, An example of
optimality is the likeliest parse for a string in an
ambiguous PCFG.

An O(N3|G|||P|) algorithm is limited as the
size of the grammar increases. This is a downside
since natural language are very large, for exam-
ple, the Penn Treebank (PTB) (Marcus and et al.,
1999) containing millions of productions, blowing
up the |P| factor. Improvements towards the origi-
nal Earley’s algorithm have been proposed already
to shave off a factor of O(P). Opedal et al. (2023)
presented a fast version of it as a modified deduc-
tion system, reducing the runtime to O(N3|G|) by
iteratively applying a weighted fold transformation
on the prediction and completion rules.

We aim to convert Earley parsing into a search
problem, which allows us to speed up the process
of recognition. This has already been performed
on other chart parsing algorithms, notably Klein
and Manning (2003) presented an extension of the
classical A* search procedure to tabular PCFG pars-
ing by precomputing grammar statistics as A* esti-
mates. The main benefits of A* can substantially
reduce the work required to parse a sentence, a
structurally simpler parser, can be easily proven
correct.

2 Background

2.1 Context-Free Grammars

A context-free grammar (CFG) G is a tuple
⟨N ,Σ,P, S⟩ where N is a non-empty set of non-
terminal symbols, Σ is the set of terminal symbols
(alphabet) withN ∩Σ = ∅, S ∈ N is a designated
start non-terminal symbol, and P is the set of pro-
duction rules where each rule p ∈ P is a 2-tuple
⟨A,α⟩, with A ∈ N and α ∈ (N∪Σ)∗, we denote
a production rule as A→ α. We will introduce a
few more notations we use in Appendix A.1.

https://github.com/Hepaul7/Astar_earley
https://github.com/Hepaul7/Astar_earley

2.2 Earley’s Algorithm
Earley’s algorithm is a top-down dynamic program,
unlike other chart parsing algorithms like CKY, it
does not require the grammar to be in a normal
form. There are three main operations of the Earley
algorithm are predict, scan, and complete, which
we will describe as a deduction system. The no-
tation for the deduction system can be found in
Appendix A.2.

An item represents a partially completed parse
tree and is denoted as dotted rules. More specifi-
cally, given a production rule X → αβ, the nota-
tion X → α • β represents a condition in which
α has already been parsed and β is expected. A
finished item means there are no more symbols
after the dot. An item can be processed and eventu-
ally finished by three actions: prediction, scan, and
completion. Prediction acts on a non-terminal and
generates new items by applying production rules.
Scan matches the next symbol with a terminal, thus
moving the dot forward by one position. Comple-
tion applies a finished item to the next symbol and
moves the dot forward.

B → ρ
PREDICTION: [i, j, A→ µ •Bν]

[j, j, B → •ρ]

[i, j, A→ µ • aν] [j, k, a]
SCAN:

[i, k, A→ µ a • ν]

[i, j, A→ µ •Bν] [j, k, a]
COMP:

[i, k, A→ µB • ν]
All items with the same dot position are arranged

under a state. A chart is the list of all the states
for the input. We start the parsing process by the
start item [0, 0, S′ → •S], which is located at the
first state in the chart. The parse is completed
when reaching the goal item [0, N, S′ → S•] at
the last state in the chart, which is equivalent to
having the dot position at the end of the input string.
Otherwise, the string is rejected. The runtime for
Earley’s Algorithm O(N3|G||P|).

Opedal et al. (2023) proposed a sped up version
of Earley’s algorithm by introducing a new set of
deduction rules to reduce a factor of O(P), which
we will include in Appendix C. It iteratevely ap-
plies a weighted fold transform (Burstall and Dar-
lington, 1977), on the prediction and completion
rule reducing their total runtime to O(N3|G|). A
new constant symbol ⋆ was introduced which is a
wild card indicating any sequence ρ. Furthermore,
they introduced a new set of items [i, j, A→ µ•ν],

[j, k, a], A → ρ, [i, j, A → ⋆•], with the axioms
A → ρ ∀(A → ρ) ∈ P , [k − 1, k, xk] ∀k ∈
{1, . . . , N}, [0, 0, S → •⋆], with the goal as
[0, N, S → ⋆•].

2.3 A* search

A* search is a widely used shortest path-finding
(SPF) algorithm (Hart et al., 1968). Given a
weighted graph, a start node, and a goal node, an
SPF algorithm finds the shortest path from start
to goal with respect to the weight. A typical SPF,
like Dijkstra’s, traverses the graph node-by-node,
prioritising unvisited nodes known to be close to
the start node, but uses no information about the
distance from the goal node. Typical A* search
implentation use a priority queue, which is often
called as the frontier.

The key characteristic of A* search is the use
of a heuristic function h(n) that estimates the
distance from a node n to the goal node, along
with the function g(n) that gives the known dis-
tance from n to the start node. Then, the function
f(n) := g(n) + h(n) estimates the shortest length
of a path through the node n, which can be used
to determine the traversal order of the nodes. A*
search can be viewed as a generalisation of Dijk-
stra’s, since setting h(n) := 0 gives us back the
Dijkstra’s algorithm.

The correctness guarantee and performance of an
A* search depends on this heuristic function h(n).
If h(n) never overestimates the true distance from
n to the goal node, then A* search is guaranteed
to return a shortest path after visiting each node at
most once. Such an h(n) is called an admissible
heuristic.

We now state the A* search completeness theo-
rem.

Theorem 2.1. A* search will always find a solution
if one exists as long as the branching factor is finite,
every action has a finite cost ε > 0, and h(n) is
finite for every item n that can be extended to reach
a goal item.

Proof. Proof in Appendix D.1.1.

We now state the A* search optimality theorem.

Theorem 2.2. A* search with an admissible heuris-
tic always finds an optimal cost solution if it exists,
as long as the branching factor is finite and every
action has a finite cost ε > 0.

Proof. Proof in Appendix D.2.1

3 Algorithm

3.1 Fast-Track Earley Algorithm

We describe Earley’s algorithm as a search prob-
lem. The goal is to find one short path from the
start item to the goal item by iteratively generat-
ing and processing items. The pseudocode for the
algorithm can be found in Appendix E.

The original (or ‘naive’) Earley’s algorithm ex-
plores the search space naively by selecting an item
from the set of unprocessed items, and processing
it. We will call an item that requires such process-
ing a ‘dirty’ item. Items corresponding to an earlier
input position are processed earlier, and among the
items that correspond to the same input position
can be ordered arbitrarily. Importantly, this order
ensures that the ‘state set’2 for an input position
is exhausted before the algorithm moves to a new
input position. The search is finished when all
reachable items are processed.

However, processing all items can be inefficient
in various ways:

• If many items that are not on a path to a goal
item are produced.

• If the input string can be recognized through
many different paths.

In practice, a single ‘recognition’ path often oc-
cupies only a small portion of the search space
(which consists of the produced items). To mitigate
this inefficiency, we present our optimized version
of Earley’s algorithm called fast-track Earley’s al-
gorithm. This algorithm employs an A* heuristic
function to optimize the order of item processing,
and prioritizes certain parts of the search space
based on the given information, thereby efficiently
identifying a shorter or optimal path.

The fast-track Earley’s algorithm has two key
ideas:

• It can process items in completely arbitrary
order, i.e., any dirty items in any input posi-
tion. This is unlike naive Early parser, which
must exhaust all items in all the earlier input
positions before moving on to a later position.

• It can use an arbitrary heuristic to determine
which dirty item to process next.

To ensure the correctness and performance, we in-
troduce a few other secondary, but important ideas:

• Each freshly predicted (i.e. the dot at begin-
ning) tracks all the input positions where it

2The set of all the produced items for a given input posi-
tion.

has been completed so far (i.e. the dot at the
end). This way, if this freshly predicted item
is predicted again (which can happen as we
are processing items in out-of-order, unlike
naive Earley), we can avoid recomputing its
completion paths.

• The algorithm terminates immediately when
any goal item is found, since we need just one
recognition path. This early termination is not
particularly useful for naive Earley, since the
goal items are always at the last input position.
However, with fast-track Earley’s we expect
to skip many items at earlier input positions.

A pseudocode of this fast-track Earley’s algo-
rithm is presented in algorithm 2. The pseudocode
does not show the implementation details such as
constructing the parse tree for brevity. The choice
of the heuristic h() is also unspecified, whereas
in the implementation we have experimented with
several heuristics as discussed in section 3.2.

3.2 A* Heuristics

So far in appendix E, we have left the details of
the heuristic function h that maps an Earley item
to a scalar representing the priority the item in the
queue of ‘dirty’ items. In this section, we discuss a
few implemented heuristics. The results from the
experiments with these heuristics is presented in
4.2.

We note that, due to how the implementation
was done, we have explicitly implemented only
f := g+h, instead of just h, since f is the function
is used for the priority queue in A* search. Except
for ‘naive’, the heuristics are not necessarily admis-
sible and therefore requires recomputations when
g changes for the items — however, we skip these
recomputation with the ‘fast-tracking’ mechanism.

We recall that an Earley item encodes the follow-
ing information:

• The production rule in the grammar.
• The dot’s position in that production rule.
• The input position where that production rule

started.
Additionally, as we can derive from the item’s posi-
tion on the Earley chart, the current input position
(i.e., the part of the rule before the dot spans the
input subsequence between starting and current po-
sition). The heuristics use these information along
with any additional prior knowledge to determine
the priority of an item in the queue.

3.2.1 ‘Naive’ Prioritizer
This assigns the priority based on solely the current
position — the earlier the current position is, the
more prioritized the item is. This is essentially
the same processing order as the ‘naive’ Earley’s
algorithm, with the overhead of the priority queue
maintenance.

3.2.2 ‘Eager’ Prioritizer
This is the reverse of ‘naive’ prioritizer — the later
the current position is, the more prioritized the item
is. As a result, the algorithm can find a quicker
path to the goal item, without having to evaluate
virtually all possible items like ‘naive’ Earley’s
algorithm.

3.2.3 ‘Terminal’ Prioritizer
This is similar to the ‘eager’ prioritizer, except that
any item where the dot is right on a terminal sym-
bol (i.e. the item will trigger a ‘scan’ operation) is
assigned the highest priority (which is a fixed con-
stant). This encourages the algorithm to progress
on the input position even faster.

3.2.4 ‘Nearest Terminal’ Prioritizer
For this heuristic, we run a small analysis of the
grammar first (using one depth-first traversal) and
determine, for each item, the minimum number of
predict/complete operations are needed to complete
it or trigger a scan (i.e. the dot is on a terminal
symbol).

4 Experiments

All our experiments follow the framework:
• Select an instance of a CFG.
• Select an input string that are recognized by

that CFG.
• Select a vartiant of Earley’s algorithm.
• For fast-track Earley’s, select also a heuristic.
• Then run the algorithm and report the measure-

ments along with additional statistics about
the grammar and the input.

We will describe the various choices in this frame-
work in the following sections.

4.1 PennTreeBank Experiment

To test our algorithms, we utilize the Wall Street
Journal (WSJ) section of the Penn Treebank (PTB)
(Marcus and et al., 1999) as the benchmark dataset
for our experiments. The PTB contains a diverse
set of annotated text from the WSJ. There are 95891

unique production rules. Since we tested correct-
ness of our algorithms with a separate methodology,
we only test the parsing speed of the algorithms.
To do that, we reduced the grammar size to around
100 and selected inputs of variable length to test.

To ensure the quality of our sentences, we first
performed preprocessing steps, namely, the sen-
tences are tokenized into words, and filtered such
that they only contain normal English words. Then,
we extracted the grammar rules from the PTB.
We tested all three algorithms naiveEarley,
FastEarley, and FastTrackEarley. Each
algorithm was selected to test on a subset of the sen-
tences extracted from the parse trees of our dataset.

Figure 1: Time per Input Length for all 3 algorithms
with terminal prioritizer

Figure 1 shows the results of our experi-
ment with the ’Terminal’ prioritizer. We no-
tice that the FastEarley has a most consis-
tent and best performance. We also see that
our FastTrackEarley algorithm in general
outperforms the NaiveEarley algorithm. The
NaiveEarley has a clear cubic relationship in
terms of the input length, while FastEarley re-
mains low.

Interestingly, the performance of
FastTrackEarley fluctuates. This fluc-
tuation is likely due to the overhead of maintaining
additional data structures for each item. The shorter
runtimes observed for FastTrackEarley,
which can sometimes be even faster than
FastEarley, could be attributed to the savings
in time from not predicting items that have
already been completed. However, it is also noted
that for shorter inputs, FastTrackEarley

sometimes exhibits performance similar to the
NaiveEarley algorithm, most likely due to less
common predictions.

4.2 Customized grammars and strings using
Hypothesis

We design a pipeline to evaluate our algorithms
against customized grammars using Lark(Lark
Team, 2018) and Hypothesis(Hypothesis Team,
2018). This ensures that the algorithm can han-
dle specific edge cases without requiring a large
amount of data.

Lark is a parsing toolkit for Python capable of
parsing all context-free languages. It is integrated
with Hypothesis a Python library for creating unit
tests.

We use the test files in the course assignments
as a starting point. These test files contain 100
CFG grammars with the correct intermediate charts
and output scores. We convert the CFG grammars
into Lark syntax(EBNF syntax), and then generate
strings for each grammar using Hypothesis. There
are in total 6546 strings with an average string
length 10.

Using the grammar rules and the strings, we
have tested all three variants of Earley’s algorithm
(‘naive’, ‘fast’ and ‘fast-track’). For the ‘fast-track’
variant, we have tested with four A* heuristics
‘naive’, ‘eager’, ‘terminal’ and ‘nearest terminal’.
The results are presented in fig. 2 and fig. 3.

4.2.1 Observations
fig. 2 shows that the runtime of fast-track Earley’s
algoirthm tends to be lower significantly lower that
the other variants for almost all the test grammars
and inputs. It also shows that, within the ‘fast-track’
variant, the choice of heuristic also has a significant
impact on the runtime, as the ‘terminal’ heuristic
were faster than its competitors for nearly all the
test grammars and inputs.

Looking at fig. 3 gives an explanation for this.
For nearly all test cases, the ‘fast-track’ variant
(with ‘terminal’ heuristic) has produced only a frac-
tion of the items produced by the ‘naive’ variant,
whereas the ‘fast’ variant in fact produces even
more items. Similarly, within the ‘fast-track’ vari-
ant, the ‘terminal’ heuristic has produced the fewest
items than the other heuristics. Since we expect
the runtime of Earley’s algorithm to super-linearly
scale with the number of items it produces, sim-
ply being able to skip unnecessary items greatly
accelerates the parser in practice — even if the the-

oretical worst-case runtime complexity is slightly
higher when the cost of priority queue operations
are considered.

5 Conclusion

In this paper, we converted Earley Parsing into a
search algorithm, enabling us to incorporate vari-
ous A* heuristics to achieve a noticeable improve-
ment to NaiveEarley and FastEarley. Ad-
ditionally, our implementation is robust to cycles
in the grammar, ensuring its versatility in more
complex parsing scenarios.

However, we would like to further explore our
algorithms with more types of context-free gram-
mars, and different kinds of inputs. We also no-
ticed that FastEarley excels when the branch-
ing factor is large in a grammar, while it may be
slower than FastTrackEarley when there are
few branching factors, and would like to show it
through experiments in the future. We also believe
it would be powerful to use treebanks and other
real-world datasets to explore statistical heuristics,
such that the heuristic can be guaranteed to be ad-
missible and return some optimal solution. Lastly,
as we mainly tried to improve NaiveEarley,
we would like to extend FastEarley to use A*
heuristics.

Figure 2: Left: The parsing time vs. the input length for the 3 variants of Earley’s algorithm. Right: The parsing
time vs. the input length for the 4 heuristics used in the fast-track Earley’s algorithm. The data is aggregated from
10 test CFGs with varying sizes and many sample input strings for each of them.

Figure 3: Left: The number of produced items for the 3 variants of Earley’s algorithm, normalized by the same
number for the naive variant. Right: The same metric for the 4 heuristics used in the fast-track Earley’s algorithm.
The data is aggregated from 10 test CFGs with varying sizes and many sample input strings for each of them.

References
R. M. Burstall and John Darlington. 1977. A transfor-

mation system for developing recursive programs. J.
ACM, 24(1):44–67.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael.
1968. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107.

Hypothesis Team. 2018. Hypothesis package. Github.

Tadao Kasami. 1966. An efficient recognition and
syntax-analysis algorithm for context-free languages.
Coordinated Science Laboratory Report no. R-257.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. In Proceed-
ings of the 2003 Human Language Technology Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 119–126.

Lark Team. 2018. Lark package. Github.

Mitchell P. Marcus and et al. 1999. Treebank-3 ldc99t42.
Web Download.

Andreas Opedal, Ran Zmigrod, Tim Vieira, Ryan Cot-
terell, and Jason Eisner. 2023. Efficient semiring-
weighted Earley parsing. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3687–
3713, Toronto, Canada. Association for Computa-
tional Linguistics.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

A Background and Notations

A.1 Context-Free Grammars

A context-free grammar (CFG) G is a tuple
⟨N ,Σ,P, S⟩ where N is a non-empty set of non-
terminal symbols, Σ is the set of terminal symbols
(alphabet) with N ∩ Σ = ∅, S ∈ N is a desig-
nated start non-terminal symbol, and P is the set
of production rules where each rule p ∈ P is a 2-
tuple ⟨A,α⟩, with A ∈ N and α ∈ (N ∪ Σ)∗,
we denote a production rule as A → α. We
will refer to |α| > 0 as the arity of the pro-
duction rule, |A → α| = 1 + |α| as the size
of the production. We define grammar size as
|G| =

∑
A→α∈P |A → α|. We define produc-

tions of size 0 as nullary productions and size 1
as unary productions. CFGs can also be weighted,
however, throughout this paper, we will consider
the unweighted case, this is akin to a Weighted-
CFG under the boolean semiring.

Furthermore, we say that a rule B → β, β ∈
(N ∪ Σ)∗ is applicable to B in a rule p if the rule
takes the form A→ αBγ.

A.2 Deduction System

U1 U2 . . .
EXAMPLE:

V

We will use the following example to illustrate a
deduction rule. The left label indicates the name
of the rule. A deduction rule may have side-
conditions that must hold true when applying the
rule. U1, U2, . . . are called the premises, which are
the initial statements or hypotheses from which the
conclusion is derived. We call V the conclusion of
the deduction. Axioms are rules without a premise.
In the unweighted case, we want to show whether
certain goal item can be proved using the set of
deduction rules from axioms that encode G and y.
There are axioms for each rule A → α in G. For
terminals, the axioms are [j, j + 1, a] which is true
if the position j in the input is equal to the non-
terminal symbol a. The other items are in the form
of [i, j, A→ α • β], where α,β ∈ (N ∪ Σ)∗.

https://doi.org/10.1145/321992.321996
https://doi.org/10.1145/321992.321996
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://github.com/HypothesisWorks/hypothesis
https://www.aclweb.org/anthology/N03-1016
https://www.aclweb.org/anthology/N03-1016
https://github.com/lark-parser/lark
https://doi.org/10.18653/v1/2023.acl-long.204
https://doi.org/10.18653/v1/2023.acl-long.204
https://doi.org/https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/https://doi.org/10.1016/S0019-9958(67)80007-X

B Naive Earley Pseudocode

Algorithm 1 Naive Earley
1: class NAIVE EARLEY algorithm 1 is our im-

plementation for the Naive Earley Algorithm.
2: Attribute: chart
3: Constructor(input str, g)
4: Initialize empty chart of length

len(input str)+ 1
5: Add items to the initial state of the

chart
6: EndConstructor

7: Method process one dirty item(pos,
dirty items)

8: Pop one item from dirty items
9: if no symbol after dot pos :

10: Complete
11: else if the symbol after dot is in-

put str[pos] :
12: Scan
13: else if the symbol after dot is non-

terminal :
14: Predict
15: EndMethod

16: Method run
17: for pos = 0 to len(chart) :
18: Initialize dirty items as an empty

set
19: for it in chart[pos] :
20: Add it to dirty items
21: while dirty items is not empty :
22: process one dirty item(pos,

dirty items)
23: EndMethod

C FastEarley Deduction Rules

We present the FastEarley Deduction Rules for ref-
erence. The items are in the form of [i, j, A →
µ • ν], [j, k, a], A → ρ, [i, j, A → ⋆•], with the
axioms A→ ρ ∀(A→ ρ) ∈ P , [k−1, k, xk] ∀k ∈
{1, . . . , N}, [0, 0, S → •⋆], with the goal as
[0, N, S → ⋆•].

PREDICTION1: [i, j, A→ µ •Bν]
[j, j, B → •⋆]

B → ρ
PREDICTION2: [j, j, B → •⋆]

[j, j, B → •ρ]

[i, j, A→ µ • aν] [j, k, a]
SCAN:

[i, k, A→ µ a • ν]

[j, k,B → ρ•] [j, k,B → ⋆•]
COMP1:

[i, k, A→ µB • ν]

[i, j, A→ µ •Bν] [j, k,B → ⋆•]
COMP2:

[i, k, A→ µB • ν]

D A* Proofs

D.1 Proof A* completeness

D.1.1 Proof for Theorem 2.1
Proof. Assume that a solution node n exists, then
we will have two possible cases:

1. n has been expanded by A*

2. An ancestor of n is on the Frontier

Assume that the second case holds, denote the an-
cestor of the Frontier be ni, then ni must have a
finite f -value. As A* runs, the f -value of the nodes
on the Frontier eventually increases, hence either
A* terminates due to the existence of a solution,
or, ni becomes the node on the Frontier with the
lowest f -value.

If ni is expanded, then either ni = n and A*
returns n as the solution, or, ni is replaced by its
successors, one of it is ni+1 which is a closer an-
cestor of n.

Applying the same argument to ni+1, we see
that if A* continues to run without finding a so-
lution, it will eventually expand every ancestor of
n, including n itself, therefore finds and returns a
solution.

D.2 Proof for A* optimality

To prove the optimality of A* search, we first define
a proposition

Proposition D.1. A* with an admissible heuristic
never expands a node with f -value greater than
the cost of an optimal solution.

Proof. Let C∗ be the cost of an optimal solution p :
(s0, s1, . . . , sk), cost(p) = cost(s0, s1, . . . , sk) =
C∗. We show that for each node in the search
space that is reachable from the initial node, at
every iteration we have an ancestor of the path is
on the Frontier.

Let n be a node reachable from the initial state
and n0, n1, . . . ni be ancestors of n, so at least one
of them is always on the Frontier. We can show

that with an admissible heuristic, for every prefix
ni of n, we have f(ni) ≤ C∗:

C∗ = cost(s0, s1, . . . , sk) (1)

= cost(s0, s1, . . . , si) = cost(si . . . , sk) (2)

= g(ni) + h∗(ni) (3)

≥ g(ni) + h(ni) = f(ni) (4)

where we used the fact that g(ni) = cost(ni) =
cost(s0, s1, . . . , sk), where h∗(ni) is the cost of an
optimal path from si to any goal state, which must
be equal to cost(si . . . , sk), since (s0, s1, . . . , sk)
is optimal.

D.2.1 Proof for Theorem 2.2

Proof. Let C∗ be the cost of an optimal solu-
tion, assume that a solution exists by Theorem
2.1, then we know that A* will terminate by ex-
panding some solution node n. Then, can use the
previous proposition to know f(n) ≤ C∗, since
n is a goal node, h(n) = 0 by definition and
therefore f(n) = g(n) = cost(n) and therefore
cost(n) ≤ C∗. Furthermore, we also have that
C∗ ≤ cost(n) = f(n) due to the fact we cannot
find any solution that has a lower cost than the op-
timal. Hence, cost(n) = C∗, therefore A* returns
a cost-optimal solution.

E The FastTrack Earley Algorithm

Please refer to Algorithm 2 for the pseudocode.

F The Grid Parsing Algorithm

We also explored Earley’s algorithm as a grid
search approach. The algorithm works as follows.
Namely, we keep track of two axis, the horizontal
axis with length of the input length + 1, and the
vertical is the level of prediction. However, this
algorithm does not work where grammar contain
cycles, as it could potentially have an infinite level
of prediction.

Algorithm 3 GrammarPoint Class
1: Class GrammarPoint:
2: Attributes: sym, rule, dot
3: Method proceed():
4: Return GrammarPoint(sym, rule, dot +

1)
5: Method reverse():
6: Return GrammarPoint(sym, rule, dot - 1)

Algorithm 4 Item Class
1: Class Item:
2: Attributes: point, beg
3: Method proceed():
4: Return Item(point.proceed(), beg)

Algorithm 5 GridNode Class
1: Class GridNode:
2: Attributes: position, state, point pos,

scanned symbol, leftover, to be completed

Algorithm 6 GridParser Class
1: Class GridParser:
2: Constructor(input str, g):
3: Initialize grid with GridNode instances
4: Set initial state in grid[0][0]
5: Method collect productions(state, node):
6: Return Set of productions from grammar

rules based on state and node
7: Method process(next sym):
8: For each item in state:
9: Complete:

10: Update state based on rules and po-
sitions

11: Predict:
12: Expand productions in current node
13: Scan:
14: Move to next state if terminals match
15: Check leftovers:
16: Update grid if leftovers exist
17: Method run parse():
18: While parsing:
19: Process each input symbol
20: Update grid state and position

Algorithm 2 Fast-Track Earley

1: S[1 . . . n] := the input sequence of length n
2: C[0 . . . n] := Earley chart to be constructed
3: G := Grammar
4: h := heuristic mapping items to priorities
5: T := a table mapping a freshly predicted item to

a list of completion positions
6: method RUN(G, S)
7: Initialize C with all empty sets
8: Initialize C[0] with starting items from G
9: Q← priority queue with C[0]

10: done← False
11: while Q is not empty and done! = True :
12: t← Pop item from Q
13: if t is a goal item :
14: done← True
15: else if t’s dot is at end :
16: COMPLETE(t, Q)
17: else if t’s dot is on a terminal :
18: SCAN(t, Q)
19: else ▷ t’s dot is on a non-terminal
20: PREDICT(t, Q)
21: end
22: method COMPLETE(t, Q)
23: b, p← t’s start and current position
24: s← the head symbol for t
25: Z ← {items in C[b] whose dot is on s}
26: for z ∈ Z :
27: z′ ← z with dot one step forward
28: if z′ ̸∈ C[p] :
29: Add z′ to Q with weight h(z′)
30: Add z′ to C[p]

31: t0 ← t with dot at start
32: Add p to T [t0]
33: end
34: method SCAN(t, Q)
35: b, p← t’s start and current position
36: t′ ← t with dot one step forward
37: if t′ ̸∈ C[p+ 1] :
38: Add t′ to Q with h(t′)
39: Add t′ to C[p+ 1]

40: end

1: method PREDICT(t, Q)
2: b, p← t’s start and current position
3: U ← set of all predictions from t
4: for u ∈ U :
5: if u ̸∈ C[p] :
6: Add u to Q with h(u)
7: Add u to C[p]
8: else ▷ Fast-track already seen items
9: u′ ← u with dot one step forward

10: for p′ ∈ T [u] :
11: if u′ ̸∈ C[p′] :
12: Add u′ to Q with h(u′)
13: Add u′ to C[p′]

14: end

