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Part I

Functional Programming

1 Basic Concepts in Functional Programming

There are two main concepts of functions and values:

• Functions compute values.

• Functions are values: can compute and return them. This case is
a lot less common in other programming languages but present in
functional languages like Haskell.

Another really important concept is that functions do not have side
effects: f (x) will always return the same value. This is not the case in
all programming languages. Consider the following code1 1 y is a class variable: shared by all ob-

jects.

class Test {

static int y = 0;

static int f(int x) {

y = y + 1;

return y;

}

public static void main(String[] args) {

System.out.println(f(0));

System.out.println(f(0));

}

}

Notice that f (0) ̸= f (0) in the above program. "This is a horri-
ble thing" - Professor David Basin. In functional languages such as
Haskell, we have no side effects, which allows us to reason as in math-
ematics. For example, if f (0) = 2, then in every possible context,
f (0) + f (0) = 2 + 2 = 4. This property is called referential trans-
parency: an expression that evaluates to the same value in every con-
text. This means we have no assignments, and no global variables,
allowing us to reason about programs without considering state. This
also allows us to easily parallelize as computations cannot interfere.

We also use recursion instead of iteration, for example, instead of
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public static int gcd (int x, int y) {

while (x != y) {

if (x > y) x = x - y;

else y = y - x;

}

}

we do recursion

gcd x y

| x == y = x

| x > y = gcd (x - y) y

| otherwise = gcd x (y-x)

Functional programs also allow a flexible type system, which avoids
many kinds of programming errors. For example, no runtime errors
like 3 + True. It also allows Polymorphism that supports reusability.

sort [5, 3, 4]

sort ["hello", "there", "world"]

1.1 Expression Evaluation

In mathematics, e.g., f (x, y) = x− y. We can compute f (5, 7) by substi-
tuting 5 for x and 7 for y and continue evaluation f (5, 7) = 5− 7 = −2.
The same holds for Haskell:

gcd 10 15 = gcd 10 (15 - 10)

= gcd 10 5

= gcd (10 - 5) 5

= gcd 5 5

= 5

It turns out there are different evaluation strategies. Consider the
program diff x y = x - y Eager Evaluation: Evaluate arguments
first, also called by "call-by-value". Then, with this strategy we would
get

diff (1 + 2) (3 + 4) = diff 3 (3 + 4)
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= diff 3 (3 + 4)

= diff 3 7

= 3 - 7

= -4

However, this is not how Haskell evaluates its programs. Lazy Eval-
uation: This is used in Haskell, also called as "call by need" or "left-
most/outermost". Certain functions force evaluation, e.g., arithmetic.
Basically, we evaluate expressions only when needed.

diff (1 + 2) (3 + 4) = (1 + 2) - (3 + 4)

= (1 + 2) - 7

= 3 - 7

= -4

1.2 Syntax

1. functions and arguments start with lower-case letter
2. arguments written in sequence
3. and separated by whitespace

gcd x y -- 1

| x == y = x

| x > y = gcd (x - y) y -- 2

| otherwise = gcd x (y-x) -- 3

Functions consist of different cases:

functionName x1 ... xn

| guard1 = expr1

.

.

| guardm = exprm

Program consists of several definitions

myConstant = 5

aFunction y1 ... ym

| guard1 = expr1

| guard2 = expr2
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anotherFunction z1 ... zk = ...

Notice that we use a space for indentation, not TABS. Patterns y1

... ym are variables, constants, or built from data constructors (like
tuples). Guards are boolean expressions. Pattern matching forces eval-
uation.

1.3 Types

Haskell is a strongly typed language, as mentioned before they avoid
runtime errors. Either programmer provides types along with function
definition.

gcd :: Int -> Int -> Int

or the system computes types itself. Function / argument types
must "match" (formally later).

Type Tuple. A type constructor takes type and builds a type. For
example, a student has name, ID number, starting year. Type (String,

Int, Int) with element ("Bob A", 1234, 2015).

• If T1, . . . , Tn are types, then (T1, . . . , Tn) is a (tuple) type. e.g. (Int,
String, Bool).

• If v1 :: T1, . . . vn :: Tn then (v1, . . . vn) :: (T1, . . . Tn). Essentially reads,
if variables v1 to vn have type T1 to Tn, then the tuple (v1, . . . vn) we
construct has type (T1, . . . , Tn). For example (3, "hi", True) ::

(Int, String, Bool).

Note that n ≥ 2, so ("foo") is not a tuple. We can also nest tuples:

• (3, ("hi", True)) :: (Int, (String, Bool))

Functions can take tuples as arguments or return tupled values

addPair :: (Int, Int) -> Int

addPair (x, y) = x + y

? addPair (3, 4)

7

Patterns can also be nested
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shift :: ((Int, Int), Int) -> (Int, (Int, Int))

shift ((x, y), z) = (x, (y, z))

Pattern matching can be used to decompose tuples

name (s, id, x) = s

studentNumber (s, id, y) = id

year (s, id, y) = y

1.4 Scope

Global scope: A function can be called from any other

f x y = ...

g x = ... h ...

h z = ... f ... g ...

Local scope with let and where

let x1 = e1

:

xn = en

in e

let builds on expression from others

• xi can bind a variable or a local function

• local definitions may refer to each other

f p1 p2 ... pm

| g1 = e1

| g2 = e2

:

| gk = ek

where

v1 a1 ... an = r1

v2 = r2

:
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2 Natural Deduction

To carry out formal reasoning we need three essential parts:

1. Language

2. Semantics

3. Deductive system for carrying out proofs

Natural deduction is a method for proofs. It consists of a set of rules
which are used to construct a derivation tree. Finally, a proof is a
derivation tree whose root has no assumptions.

2.1 Propositional Logic: Syntax

Propositions are built from a collections of variables and closed under
disjunctions, conjunction and implication, etc. More formally, let V be
a given set of variables. LP, the language of propositional logic, is the
smallest set where:

• X ∈ LP if X ∈ V

• ⊥∈ LP

• A ∧ B ∈ LP if A ∈ LP and B ∈ LP

• A ∨ B ∈ LP if A ∈ LP and B ∈ LP

• A → B ∈ LP if A ∈ LP and B ∈ LP

2.2 Propositional Logic: Semantics

• A valuation σ : V → {True, False} is a function mapping variables
to truth values (truth assignment). Valuations are simple kinds of
models (interpretations). Let Valuations be a set of valuations.

• Satisfiability is the smallest relation |=⊆ Valuations ×LP such that

– σ |= X if σ(X) = True

– σ |= A ∧ B if σ |= A and σ |= B

– σ |= A ∨ B if σ |= A or σ |= B

– σ |= A → B if whenever σ |= A then σ |= B

– σ ̸|=⊥ for every σ ∈ Valuations (No valuation satisfies contradic-
tion)

• A formula A ∈ LP is satisfiable if σ |= A for some valuation σ
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• A formula A ∈ LP is valid (a tautology) if σ |= A for all valuations
σ

• Semantic Entailment: A1, . . . , An |= A if for all σ, if σ |= A1, . . . , σ |=
An then σ |= A

For example,

• X ∧ Y is satisfiable, a solution simply sets X and Y to true: σ |=
X ∧ Y for σ(X) = σ(Y) = True.

• X → X is valid (a tautology): σ(X) = True means True → True, if
σ(X) = False then the entire statement is vacuously true.

• ¬X, X ∨ Y |= Y. Assume it holds as σ |= ¬X and σ |= X ∨ Y
constrain σ(X) = False and σ(Y) = True, so σ |= Y.

2.3 Requirements for a Deductive System

Syntactic entailment ⊢ (derivation rules) and semantic entailment |=
(truth tables) should agree. This requirement has two parts:

• Soundness: If H ⊢ A can be derived, then H |= A

• Completeness: If H |= A, then H ⊢ A can be derived

for H ≡ A1, . . . , An some collection of formulae. These are the key
requirements for any logic. Decidability is also desirable. What is the
complexity of determining:

• If a proposition A is satisfied by a valuation of σ? Linear.

• If A is satisfiable? NP.

• If A is a tautology? Exponential (Complement of NP).

2.4 Natural Deduction for Propositional Formulae

A sequent is an assertion (judgement) of the form A1, . . . , An ⊢ A
where A, A1, . . . , An are all propositional formulae. Intuitively, A fol-
lows from the Ais. If a deductive system is sound, this means that the
Ais semantically entail A. An axiom is a starting point for building
derivation trees.

axiom. . . , A, . . . ,⊢ A

A proof of A is a derivation tree with root ⊢ A. If deductive system is
sound, then A is a tautology. Let’s introduce some proof rules.

Conjunction: There are two kinds of rules, introduce and eliminate
connectives.
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Γ ⊢ A Γ ⊢ B ∧-IΓ ⊢ A ∧ B

Γ ⊢ A ∧ B ∧-ELΓ ⊢ A

Γ ⊢ A ∧ B ∧-ERΓ ⊢ B

Here is an example derivation

axiom
Γ ⊢ X ∧ (Y ∧ Z)

∧ -ELΓ ⊢ X

axiom
Γ ⊢ X ∧ (Y ∧ Z)

∧ -ERΓ ⊢ Y ∧ Z ∧ -ERΓ ⊢ Z ∧-I
X ∧ (Y ∧ Z)︸ ︷︷ ︸

≡Γ

⊢ X ∧ Z

Each rule is sound in that is preserves semantic entailment. E.g., for
∧-I if Γ |= A and Γ |= B then Γ |= A ∧ B. If all rules preserve semantic
entailment, logic is sound.

Implication

Γ, A ⊢ B
→-IΓ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A ∧-EΓ ⊢ B

Application of →-I turns last derivation (the example derivation
above) into a proof.

Disjunction

Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C
∨-EΓ ⊢ C

Γ ⊢ A ∧ B ∧-ELΓ ⊢ A

Γ ⊢ A ∧ B ∧-ERΓ ⊢ B

Elimination rule formalizes proof by cases. For example: - When it
rains, then I wear my jacket. - When it snows, then I wear my jacket. -
It is raining or snowing. - Therefore, I wear my jacket.

Falsity

Γ ⊢ ⊥ ⊥-EΓ ⊢ A
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Negation define ¬A as A → ⊥.

Γ ⊢ ¬A Γ ⊢ A →-IΓ ⊢ B

which is derived by

Γ ⊢ ¬A Γ ⊢ A →-EΓ ⊢ ⊥ ⊥-EΓ ⊢ B

Syntax (Cont.) Form, the formulae of first-order logic, is the smallest
set where 1. ⊥ ∈ Form, 2. pn(t1, . . . , tn) ∈ Form if pn ∈ P and tj ∈
Term, for all 1 ≤ j ≤ n, 3. A ◦ B ∈ Form if A ∈ Form, B ∈ Form,
and ◦ ∈ {∧,∨,→}, and 4. Qx.A ∈ Form if A ∈ Form, x ∈ V , and
Q ∈ {∀, ∃} Each occurrence of each variable in a formula is **bound**
or **free**. A variable occurrence x in a formula A is **bound** is x
occurs within a sub-formula B of A of the form ∃.B or ∀x.B, which is
analogous from mathematics x2 +

∫ d
c x · ydy .

2.5 Binding and α-conversion

Names of bound variables are irrelevant, they just encode the bind-
ing structure. We can rename **bound** variables at any time (α-
conversion). Note that we must preserve the binding structure. For
example

∀x.∃y.p(x, y) = ∀y.∃x.p(y, x)

However, you cannot do something from ∃z.∀y.p(z, f (y)) to ∃y.∀y.p(y, f (y))
since this changes the binding structure. Also converting p(x) →
∀x.p(x) into p(y) → ∀y.p(y) will not work since x is a free variable
on the left hand side of the implication. Hence, we cannot rename free
variables.

Semantics (Cont.) A structure is a pair S = ⟨US , IS ⟩ where US is an
nonempty set, the universe, and IS is a mapping where: 1. IS (pn) is
an n-ary relation on US , for pn ∈ P , and 2. IS ( f n) is an n-ary (total)
function on US for f n ∈ F As a shorthand, we write pS for IS (p) and
f S for IS ( f ).

An interpretation is a pair I = ⟨S , v⟩, where S = ⟨US , IS ⟩ is a
structure and v : V → US a valuation. The value of a term t under the
interpretation I = ⟨S , v⟩ is written as I(t) and defined by 1. I(x) =

v(x), for x ∈ V , and 2. I( f (t1, . . . , tn)) = f S (I(t1), . . . , I(tn))

Satisfiability |=⊆ Interpretations × Form is the smallest relation satisfy-
ing ⟨S , v⟩ |= p(t1, . . . , tn) if (I(t1), . . . , I(tn)) ∈ pS . . . ⟨S , v⟩ |= ∀x.A
if ⟨S , v[x 7→ a]⟩ |= A for all a ∈ US and ⟨S , v⟩ |= ∃x.A if ⟨S , v[x 7→
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a]⟩ |= A. Here v[x 7→ a] is the valuation v′ identical to v except that
v′(x) = a. So when ⟨S , v⟩ |= A we say A is satisfied with respect
to ⟨S , v⟩ OR ⟨S , v⟩ is a model of A. Note that A does not have free
variables, satisfaction does not depend on the valuation v. We write
S |= A. When every suitable interpretation is a model, we write |= A
and say A is valid. A is satisfiable if there is at least one model for A
(and contradictory otherwise).

For example: ∀x.p(x, s(x)) then a model can be (for all x, x is less
than x + 1) - US = N - pS = {(m, n)|m, n ∈ US ∧ m < n} - sS = the
successor function on US for example sS (x) = x + 1

2.6 Substitution

Replaces all occurrences of a free variable x in A with some term t. We
write A[x/t] to indicate that we substitute x by t in A. For example,
A ≡ ∃y.y × x = x × z Then, if we want to substitute 2 − 1 for x we
would get A[x/2 − 1] ≡ ∃y.y × (2 − 1) = (2 − 1) × z. You can even
substitute a free variable for x, for example A[x/z] ≡ ∃y.y × z = z × z.

2.7 Natural Deduction for First-order Logic

Universal Quantification

Γ ⊢ A ∀-I*Γ ⊢ ∀x.A

Γ ⊢ ∀x.A ∀-EΓ ⊢ B

Side condition * x is not free in any assumption in Γ.

Existential quantification

Γ ⊢ A[x/t]
∃-I*Γ ⊢ ∃x.A

Γ ⊢ ∃x.A Γ, A ⊢ B
∃-E*Γ ⊢ B

Side condition *: x is neither free in B nor free in Γ.

2.8 Equality

Equality is an equivalence relation

refΓ ⊢ t = t
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Γ ⊢ t = s sym
Γ ⊢ s = t

Γ ⊢ t = s Γ ⊢ s = r sym
Γ ⊢ t = r

Equality is also a congruence on terms and all (definable) relations

Γ ⊢ t1 = s1 . . . Γ ⊢ tn = sn cong-1
Γ ⊢ p(s1, . . . , sn)

Γ ⊢ t1 = s1 . . . Γ ⊢ tn = sn Γ ⊢ p(t1, . . . , tn) cong-2
Γ ⊢ p(s1, . . . , sn)

Soundness: Equality on US is a congruence.
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3 Correctness

Correctness is important! It checks what your program should do.
What does this means?

• Termination: Important for many, but not all programs
• Functional behavior: Function should return the "correct" value, it

can be defined by another (mathematically defined) function or an
input-output relation.

Correctness is rarely obvious, so it must be proven!

3.1 Termination

If f is defined in terms of functions g1, . . . , dk where gi ̸= f , and each
gi terminates, then so does f . For example:

g x = x * x + 15

f x = (g x + x + 2) / 13

The problem comes with recursive function, for example when gi =

f . An example of this is fac n. We need to introduce a sufficient con-
dition for termination: Arguments are smaller along a well-founded
order on function’s domain.

Well-Founded Relation
An order > on a set S is well-founded iff there is no infinite
decreasing chain x1 > x2 > x3 > . . . for xi ∈ S .

Examples are: >N , counter examples: >Z ,>R where >S indicates
the domain S , for example >S⊆ S × S

Constructing Well-Founded Relations
We can construct new well-founded relations from existing ones.
Let R1 and R2 be binary relations on a set S. The composition of
R1 and R2 is defined as

R1 ◦ R1 ≡ {(a, c) ∈ S × S|∃b ∈ S.aR1b ∧ bR2c}

Let R ⊆ S × S, we define

R1 ≡ R

Rn1 ≡ R ◦ Rn for n ≥ 1

R+ ≡
⋃

n≥1

Rn

So aR+b iff aRib for some i ≥ 1
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Lemma: Let R ⊆ S × S. Let s0, si ∈ S and i ≥ 1. Then s0Risi iff
there are s1, . . . , si−1 ∈ S such that s0Rs1R . . . Rsi−1Rsi .

Theorem: If > is a well-founded order on the set S, then >+ is
also well-founded on S.

Proof. For the sake of contradiction, assume that a1 >+ a2 >+

a3 >+ . . . is an infinite descending chain. Then, there exists ij ≥ 1
such that aj >ij aj+1, for all j ≥ 1. By the above lemma, the
sequence a1 >i1 a2 >i2 a3 >i3 . . . contradicts the well-foundedness
of >.

3.2 Correctness

Equational Reasoning Proofs based on a simple idea: Functions are
equations! Consider the following simple Haskell Program:

swap :: (Int, Int) -> (Int, Int)

swap (a, b) = (b, a)

Meaning, for all possible values of a and b, swap(a, b) = (b, a). More
formally,

∀a ∈ Z, ∀b ∈ Z, swap(a, b) = (b, a)

Some properties can be shown through equational reasoning. More
generally, they become proofs in first-order logic with equality.

We can do a proof by cases. Consider the following example

maxi :: Int -> Int -> Int

maxi n m

| n >= m = n

|otherwise = m

Proof. We can prove that maxi n m ≥ n. We have n ≥ m ∨ ¬(n ≥ m).
Now we show maxi n m ≥ n for both cases

• Case when n ≥ m: maxi n m = n and n ≥ n
• Case when ¬(n ≥ m): maxi n m = m, but m > n so maxi n m ≥ n
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Proof by Induction How to prove a formula P (with free variable n),
for all n ∈ N? Proof by cases is not possible here! Base case: Prove
P[n/0], Step Case: For an arbitrary m not free in P, prove P[n/m + 1]
under the assumption P[n/m].

Well-founded Induction Also known as strong induction. To prove P
for all natural numbers n: Well-founded step: For an arbitrary m (not
free in P), prove P[n/m] under the assumption that P[n/l] holds, for
all l < m (where also l is not free in P). In general, we can use any
well-founded ordering <. Here, the transitive closure of the relation
on N. Same principle applies to any set, not just N.
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4 Lists and Abstraction

4.1 List Type

List types are a new type constructor, if T is a type, then [T] is a type.
The elements of [T] are:

• Empty List [] :: [T]
• Non-empty list (x : xs) :: [T], if x :: T and xs :: [T]

So [1, 2, 3] is short hand for 1 : (2 : (3 : [])). Lists are inductive data
types.

Functions on List Note that when we want to write a function on lists,
we will always need to define the case of the empty list.

• How to compute with the empty list []
• How to compute with the non-empty list (x : xs)

For example: a function sumList :: [Int] -> Int must specify:

• Empty list [] 7→ 0
• Non-empty list (x : xs) 7→ x + sum of lists xs

Translated to Haskell

sumList [] = 0

sumList (x:xs) = x + sumList xs

Patterns (lists and in general) Pattern matching has two purposes. It
checks if an argument has the proper form, and it also binds values to
variables. For example: (x : xs) matches with [2, 3, 4] (2 : 3 : 4 : [] =

2︸︷︷︸
x

: [3, 4]︸︷︷︸
xs

).

Patterns are inductively defined

• Constants: −2, ’1’, True, []
• Variables: x, f oo
• Wild Card: _
• Tuples: (p1, p2, . . . , pk), where pi are patterns
• Non-empty lists: (p1 : p2), where pi are patterns. It succeeds if

a is a nonempty list a1 : a2 and p1 matches a1 and p2 matches
a2

Patterns are required to be linear. This means that each variable
can occur at most once! Hence, [x, x] is not a valid pattern.
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Zipper Function Extra elements in the longer list are discarded!

zip[2, 3, 4][4, 5, 78] = [(2, 4), (3, 5), (4, 78)]

zip[2, 3][1, 2, 3] = [(2, 1), (3, 2)]

In Haskell:

zip (x:xs) (y:ys) = (x, y) : zip xs ys

zip _ _ = []

List Comprehension Notation for sequential processing of list elements,
analogous to set comprehension in set theory {2 · x|x ∈ X}. In Haskell

[2 * x | x <- xs]

Just like Python, they can be augmented with guards

[2 * x | x <- xs, pred1(x), ...]

Induction over lists To use induction, we use the following rule. Proof
by induction: to prove P for all xs in [T]

• Base case: Prove P[xs/[]]
• Step Case: Prove ∀y :: T, ys :: [T].P[xs/ys] → P[xs/y : ys], i.e.,

– Fix arbitrary y :: T and ys :: [T] (both not free in P)
– Induction Hypothesis: P[xs/ys]
– Prove: P[xs/y : ys]

4.2 Abstraction

Until now, we have only seen simple structuring techniques. We will
now examine different ways of structuring, simplifying programs and
improving their reusability.

Polymorphic Consider the following example

length [] = 0

length (x:xs) = 1 + length xs
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What is the type? [Int] -> Int, [String] -> Int, ... The type
is polymorphic: [t] -> Int for all types t. This is often called para-
metric polymorphism. A function is is typeable for all instances.

Definition A type w for f is a most general (also called principle)
type iff for all types s for f , s is an instance of w.

Higher-order Functions First order: Arguments are base types or con-
structor types.

Int -> [Int]

Second order: Arguments are themselves functions

(Int -> Int) -> [Int]

Third Order: Arguments are functions, whose arguments are func-
tions

((Int -> Int) -> Int) -> [Int]

Higher-order functions: Functions of arbitrary order
An example is the map function.

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

And lets consider a function times2 x = 2 * x, we can then do
map times2 [2, 3] to multiply 2 to each element of the list. Consider
another example:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Basically replace all of the : with a function f . So f z[1, 2, 3] =

f (1, f (2, f (3, z)).

λ-expressions Anonymous functions in Haskell syntax: e.g. \x -> 2

* x.

Function Composition and Iteration
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• Function Composition and Iteration

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

• Function Iteration

iter :: Int -> (a -> a) -> a -> a

iter 0 f x = x

iter n f x = f (iter (n-1) f x)

Functions as Values Functions can also be returned as values, for ex-
ample:

twice :: (t -> t) -> (t -> t)

twice f = f . f

So if we run twice times 3 1 its basically times 3 (times 3 1) =

9, similarly (twice . twice) times3 1 = times 3 (times 3 (times

3 (times 3, 1))). Now, we can also combine function iteration with
function as values, such as2 2 f = iter 2 times2, we want to com-

pute f 5. Don’t confuse the f inside the
function definition of iter with it! In
the function definition of iter it refers
to times2!let f = iter 2 times2 in f 5

= (iter 2 times2) 5

= (times 2 . (iter (2-1) times2)) 5

= times 2 ((iter (2-1) times2) 5)

= 2 * ((iter (2-1) times2) 5)

= 2 * ((iter 1 times2) 5)

= 2 * (times2 . (iter (1-1) times2) 5)

= 2 * (2 * (iter (1-1) times2) 5)

= 2 * (2 * (iter (0) times2) 5)

= 2 * (2 * id 5)

= 2 * (2 * 5)

= 2 * 10

= 20

Difference List : Concatenating lists naively takes O(n2). This is bad!
We can improve this to O(n) with difference lists. A difference list is
a function [a] -> [a] that prepends a list to its argument. In func-
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tional programming we can stick something to the end of the list in
constant time.

type DList a = [a] -> [a]

empty :: DList a

empty = \xs -> xs

sngl :: a -> DList a

sngl x = \xs -> x : xs

-- concat (higher-order)

app :: DList a -> DList a -> DList a

ys ’app’ zs = \xs -> ys (zs xs)

fromList :: [a] -> DList a

fromList ys = \xs -> ys ++ xs

toList :: DList a -> [a]

toList ys = ys []

Partial Application Functions of multiple arguments can be partially
applied! For example:

multiply :: Int -> Int -> Int

multiply a b = a * b

can be partially applied as multiply 7 which has the type Int ->

Int. We have the following lemma.

If f :: t1 → t2 → · · · → tn → t and e1 :: t1, . . . , ek :: tk then
f e1, . . . ek :: tk+1 → · · · → tn → t

So how many arguments do functions have? Each function only
takes exactly one argument. Using the multiply example, multiply 2

3 really means (multiply 2) 3. Partial application is consistent with
the view (= illusion) that functions take multiple arguments. Operator
sections: if ⊕ is an infix binary operator:

(a⊕) ≡ λx.a ⊕ x

(⊕a) ≡ λx.x ⊕ a
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For example, running map ((2*) . (3*)) [1, 2, 3] returns [6, 12,

18]

Multiple Arguments versus Tupling Tuple arguments: no partial appli-
cation. But with currying we can achieve something similar:

curry :: ((a, b) -> c) -> a -> b -> c

uncurry :: (a -> b -> c) -> (a, b) -> c

curry f = f’ where f’ x1 x2 = f (x1, x2)

uncurry f’= f where f (x1,x2) = f’ x1 x2
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5 Higher-order Programming and Types

5.1 Review of higher-order functions

First-order functions take arguments that are base types. Higher-order
functions have functions that are arguments. Consider the function
mystery x = x. This function can be both first and higher-order. In
addition to map and fold, we introduce a filter function.

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Map: Iteratively apply a function to each element

? map (2*) [1 .. 5]

[2, 4, 6, 8, 10] :: [Int]

? map (>2) [1 .. 5]

[False, False, True, True, True] :: [Bool]

Filter: Selection

? filter (>2) [1 .. 5]

[3, 4, 5] :: [Int]

? map (2>) [1 .. 5]

[1]:: [Int]

Fold: Use function to "combine" elements

? foldr (+) 0 [1 .. 5]

15 :: int

We can define new functions with filter, for example we can define
remove p = filter (not . p). We can also partition lists as part p
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xs = (filter p xs, remove p xs). However the below for partition
is more efficient (runtime)

partition p [] = ([], [])

partition p (x:xs)

| p x = (x:yesses, nos)

| otherwise = (yesses, x:nos)

where (yesses, nos) = partition p xs

Map and filter can also be implemented using list comprehension.

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

Conversely, we can implement list comprehension with map and
filter. let fun p = expr in map fun s defines [expr | p <- s].
foldr is right-associative fold

foldr(⊕)e[l1, l2, . . . , ln] = l1 ⊕ (l2 ⊕ · · · ⊕ (ln ⊕ e))

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

foldl is left-associative fold

foldl(⊕)e[l1, l2, . . . , ln] = ((e ⊕ l1)⊕ l2)⊕ · · · ⊕ ln

foldl :: (b -> a -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x:xs) = foldl f (f e x) xs

For associative functions, and e is neutral element, there is no dif-
ference

? foldl (+) 0 [1, 2, 3] -- ((0 + 1) + 2) + 3

6 :: Int
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? foldr (+) 0 [1, 2, 3] -- 1 + (2 + (3 + 0))

6 :: Int

However, not all (binary) functions are associative, it would not be
equivalent for −. We can implement length using foldr as length xs

= foldr (_ y -> 1 + y) 0 xs

Case Study: Operations on Vectors and Matrices

type Vector = [Int]

vecAdd :: Vector -> Vector -> Vector

vecAdd (x:xs) (y:ys) = (x + y) :: vecAdd xs ys

vecAdd _ _ = []

We can replace recursion with map and zip

vecAdd v1 v2 = map (uncurry (+)) (zip v1 v2)

A common pattern is combining zip and binary functions. zipWith
= map + zip

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipWith f _ _ = []

We can represent matrices column-wise using lists. Hence, type

Matrix = [Vector]. So we get

matAdd :: Matrix -> Matrix -> Matrix

matAdd = zipWith vecAdd

(each column is a list, add column with column). Now if we wanna
do matrix multiplication, then we need to go through rows and columns.
First, we define a few things. First with a constant vector of size n:
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vconst :: Int -> Int -> Vector

vconst 0 _ = []

vconst n x = x : vconst (n - 1) x

and the unit matrix:

unit :: Int -> Matrix

unit 0 = []

unit n =

(1 : vconst (n - 1) 0) : map (0:) (unit (n - 1))

transposing a matrix

tr :: Matrix -> Matrix

tr [] = []

tr [v] = map (\x -> [x]) v

tr (v:vs) = zipWith (:) v (tr vs)

dot product of two vectors

skProd :: Vector -> Vector -> Int

skProd (x:xs) (y:ys) = x*y + skProd xs ys

skProd _ _ = 0

OR

skProd :: Vector -> Vector -> Int

skProd v w = sum (zipWith (*) v w)

now we can define vector matrix multiplication as

vecMult :: Matrix -> Vector -> Vector

vecMult a b = map (’skProd’ b) (tr a)
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and matrix multiplication as

matMult :: Matrix -> Matrix -> Matrix

matMult a b = map (vecMult a) b

5.2 Types

Type checking should prevent "dangerous expressions". Dangerous
expressions mean runtime error. Some objectives for a type check

• quick, decidable, static analysis
• permit as much generality / re-usability as possible
• prevent runtime errors: subject reduction

We say if e ↪→ e′ and ⊢ e :: τ, then e′ :: τ. We examine a simplified
language: ’Mini Haskell’.

Typing Types (VT is a set of type variables: a, b, . . . )

τ ::= VT
∣∣∣Bool

∣∣∣Int(τ, τ)
∣∣∣(τ → τ)

Type system notation based on typing judgement: Γ ⊢ t :: τ

• Γ is a set of bindings xi : τi mapping variables to types. Intuitively,
Γ represents a kind of typing "symbol table".

• t is a term.
• τ is a type.

The intuition is (not proof rules): given a symbol table Γ, then term t
has type τ. For example x : Int ⊢ x + 2 :: Int but x : Int, f : Bool →
Bool ̸⊢ f x :: Bool.

Rules for core λ-calculus Axiom:

Var. . . , x : τ, · · · ⊢ x :: τ

Abstraction (x ̸∈ Γ)

Γ, x : σ ⊢ t :: τ
Abs

Γ ⊢ (λx.t) :: σ → τ

Application:

Γ ⊢ t1 :: σ → τ Γ ⊢ t2 :: σ
App

Γ ⊢ (t1t2) :: τ
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Typing Rules for Mini-Haskell Base Types
IntΓ ⊢ n :: Int TrueΓ ⊢ True :: Bool FalseΓ ⊢ False :: Bool

Operations (op ∈ {+,×}):

Γ ⊢ t :: Int iszero
Γ ⊢ (iszero t) :: Bool

Γ ⊢ t1 :: Int Γ ⊢ t2 :: Int
BinOp

Γ ⊢ (t1 op t2) :: Int

Γ ⊢ t0 :: Bool Γ ⊢ t1 :: τ Γ ⊢ t2 :: Int
BinOp

Γ(if t0 then t1 else t2) :: τ

Tuples:

Γ ⊢ t1 :: τ1 Γ ⊢ t2 :: τ2 Tuple
Γ ⊢ (t1, t2) :: (τ1, τ2)

Γ ⊢ t :: (τ1, τ2)
fst

Γ ⊢ (fst t) :: τ1

Γ ⊢ t :: (τ1, τ2)
snd

Γ ⊢ (snd t) :: τ2

Type Inference Syntax-directed typing rules specify algorithm for com-
puting type.

1. Start with judgement Γt :: τ0 with type variable τ0.
2. Build derivation tree bottom-up by applying rules. Introduce fresh

type variables and collect constraints if needed.
3. Solve constraints (unification) to get possible types.

Here is a simple example:

Varz : τ1 ⊢ z :: τ0 Abs⊢ λz.z :: τ1 → τ

Varx :: τ2 ⊢ x :: τ3 Abs⊢ λx.x :: τ1 App
⊢ (λz.z)(λx.x) :: τ0

Here, we have to know that τ2 = τ3 to applying the variable rule on
the right, and we also know that τ1 = τ2 → τ3 to apply the abstraction
rule. So we know τ0 = τ3 → τ3 (the most general type). Sometimes,
terms are untypeable. Type inference fails to build inference tree or
solve constraints.

Self-Application Self application means "applying a function f to it-
self". Self application λ f . f f is not typeable. We can show it is not
typeable with the proof

Varf : τ1 ⊢ f :: τ3 → τ2
Varf : τ1 ⊢ f :: τ3 App

f : τ1 ⊢ f f :: τ2
Abs⊢ λ f . f f :: τ0

So, to apply the abstraction rule we must know that τ0 = τ1 → τ2 and
to apply the variable rule we must know τ1 = τ3 → τ2 and that τ1 = τ3.
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Problem! τ3 = τ3 → τ2 requires infinite function type ((. . . (· · · →
τ2) → τ2) → τ2), but Haskell types are finite. This means there are
no solution to the constraints. Compare it with the natural numbers:
x = 1 + x has the only solution ∞, but ∞ ̸∈ N.

Curry-Howard Isomorphism (not exam relevant) Type construction ” →
” corresponds to propositional logic ” → ”. Atomic types correspond
to propositional variables.

5.3 Type Classes

Polymorphism is restricted using class constraints

allEqual :: Eq a => a -> a -> a -> Bool

allEqual x y z = ( x == y) && (y == z)

Eq a specifies a type class constraint. It means that a must be a
type that belongs to the Eq type class. The Eq type class provides an
interface for types that can be compared for equality.

=>: This symbol separates the type class constraints from the actual
type of the function. It can be read as "given" or "subject to". So, you
can read this as "given that a is an instance of Eq".

A class defines a set of types. E.g., Eq is the equality class

• Int ∈ Eq

? allEqual 3 (2+1) (1+2)

True :: Bool

• int → int ̸∈ Eq

? allEqual (\x -> x + 1) (1+) (+1)

ERROR: a -> a is not an instance of class "Eq"

We define a type class as below

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x /= y = not (x==y)
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The definition includes the class name Eq, signature and a default
implementation (optional) which can be overwritten later. Elements of
the class are called instances.

Classes allow restricted form of type generalization. The most gen-
eral type with class constraint for allEqual is

allEqual :: Eq t => t -> t -> t -> Bool

For example, we can define elements of a list as

elem :: Eq t => t -> [t] -> Bool

elem _ [] = False

elem a (x:xs) = (a == x) || elem a xs

Instances Instances builds instance by "interpreting" signature func-
tions

instance Eq Bool where

True == True = True

False == False = True
_ == _ = False

We are defining the == symbol over the Bool.

Derived Classes Classes themselves can also depend on type condi-
tions.

class Eq a => Ord a where

(<), (>), (<=), (>=) :: a -> a -> Bool

max, min :: a -> a -> a

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y <= x && x /= y

max x y | x <= y = y

| otherwise = x

max x y | x <= y = x
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| otherwise = y

The above is saying, if a belongs to Ord, then a must also belong
to Eq. Functions for Eq are inherited and some new ones must be
given. This leads to class hierarchies, where classes can be hierar-
chically structured. Inheritance hierarchies like in Object-Oriented-
Programming.

Show and Read

show :: Show a => a -> String

read :: Read a => String -> a
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6 Algebraic Data Types

Until now, we’ve done data modeling with

• Base types: Ints, Bool, Char, Double, etc.
• Compound types: tuples, lists, functions, etc.
• Type synonyms: type Complex = (Double, Double)

Programming languages solve problems in the real world, so we better
represent things in the real world. The solution is algebraic data types,
which declare new types tailored to the objects being modeled. For
example, we declare type Months with elements January, February,

..., December. These are new data constructors. For trees, declare
type Tree with elements like

Node 1 (Node 10 Leaf Leaf) (Node 17 (Node (14 Leaf Leaf) (Node 20 Leaf Leaf))

Enumeration Types (Disjoint Unions)

data Season = Spring | Summer | Fall | Winter

data Month = January | February | March | April | May | June | July |

August | September | October | November | December

Syntax: Starts with keyword data, names different (uniquely named)
constructors, first letter of each constructor must be upper-case. It es-
sentially defines a set: Season = {Spring, Summer, Fall, Winter}.
Functions can be written using pattern matching e.g. whichSeason ::

Month -> Season.

Product Types

data People = Person Name Age

type Name = String

type Age = Int

An element of type People consists of a name n and an age a, e.g.,

Person "Uncle George" 85

Person "Levi Jeans" 501

Constructors are functions

? :type Person

Person :: Name -> Age -> People
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Functions may be defined by pattern matching

showPerson :: People -> String

showPerson (Person n a) = n ++ " who is " ++ show a ++ " years old"

Product Types versus Tuples Alternative to products are tuples. Ad-
vantage of product types: Conceptual: new, self-contained type, ob-
jects are labeled hence types are unambiguous. Disadvantage include:
Longer definitions, many polymorphic functions are no longer appli-
cable fst, zip, ...

6.1 Enumeration and Product Types

These two types can be combined.

data Shape = Circle Double | Rectangle Double Double

We can write functions by pattern matching

area :: Shape -> Double

area (Circle r) = pi * r * r

area (Rectangle h w) = h * w

Integration with classes No default functions like == or show

data Foo = D1 | D2 | D3

? D1 == D2

ERROR: No instance for (Eq Foo)

Class instances can be explicitly created

instance Eq Foo where

D1 == D1 = True

D2 == D2 = True

D3 == D3 = True
_ == _ = False

? D1 == D2

False :: Bool

In some cases, they can be automatically derived.

data Foo = D1 | D2 | D3

deriving (Eq, Ord, Enum, Show)

Recursive Types Sets of objects are often recursively define, below is a
simple arithmetic grammar Expr := Int|Expr + Expr|Expr − Expr
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data Expr = Lit Int | Add Expr Expr | Sub Expr Expr

deriving (Show, Eq)

The program can be done via pattern matching

eval :: Expr -> Int

eval (Lit n) = n

eval (Add e1 e2) = (eval e1) + (eval e2)

eval (Sub e1 e2) = (eval e1) - (eval e2)

A tree can be useful to describe many data structures. One can define
a tree as an algebraic data structure in Haskell and define functions on
it. Grammar:

ITree ::= Leaf | Node Int ITree ITree

Haskell data type

data ITree = Leaf | Node Int ITree ITree

= deriving (Eq, Show)

Example tree t

Node 1 (Node 10 Leaf Leaf)

(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))

With that, we can define functions. Sum of values:

treeSum :: ITree -> Int

treeSum Leaf = 0

treeSum (Node n t1 t2) = n + (treeSum t1) + (treeSum t2)

Depth:

treeSum :: Itree -> Int

depth Leaf = 0

depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

Occurrences of an element

occurs :: ITree -> Int -> Int

occurs Leaf p = 0

occurs (Node n t1 t2) p

| n == p = 1 + rest

| otherwise = rest

where rest = occurs t1 p + occurs t2 p

Note that this tree and the functions on it have monomorphic types →
could use type parameters to get polymorphism: Polymorphic Alge-
braic Types.
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Exercise! Have we seen this type before?

data L t = E | C t (L t)

deriving (Eq, Ord, Show)

observe that

E :: L t

C :: t -> L t -> L t

What is the type of the following function?

f y E = False

f y (C x 1) = x == y || f y 1

What is the result?

? f 3 (C 2 (C 3 (C4 E)))

Answers: 1. List Type! 2. f :: Eq t => t -> L t -> Bool 3.
Check if element is inside a list True :: Bool

6.2 Higher-order Programming with Data Types

map to mapTree

mapTree :: (t -> u) -> Tree t -> Tree u

mapTree f Leaf = Leaf

mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1) (mapTree f t2)

? mapTree (+2) (Node 7 (Node 20 Leaf Leaf) (Node 1 Leaf Leaf))

Node 9 (Node 22 Leaf Leaf) (Node 3 Leaf Leaf) :: Tree Int

? mapTree not (Node True (Node False Leaf Leaf) (Node True Leaf Leaf))

Node False (Node True Leaf Leaf) (Node False Leaf Leaf) :: Tree Bool

foldr to treeFold In a list l, : is replaced with f and E with e. In the tree
t, a node N is replaced with f and a leaf L with e.

treeFold :: (a -> b -> b -> b) -> b -> Tree a -> b

treeFold f e Leaf = e

treeFold f e (Node x l r) = f x (treeFold f e l) (treeFold f e r)

Tree Traversals
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preorder t = treeFold (\x l r -> [x] ++ l ++ r) [] t

postorder t = treeFold (\x l r -> l ++ r ++ [x]) [] t

inorder t = treeFold (\x l r -> l ++ [x] ++ r) [] t

Algebraic types are “first class” citizens implying they are fully com-
patible with polymorphism and type classes.

6.3 Correctness of Algebraic Datatypes

Consider the algebraic datatype: data Tree a = Leaf | Node a (Tree

a ) Tree a) again. A data type defines a set of terms for each type in-
stance. E.g. Tree Int corresponds to {Node, Node 0 Leaf Leaf, . . . }.
Algebraic here means the smallest set S, where Leaf ∈ S and x ∈
a ∧ t1 ∈ S ∧ t2 ∈ S =⇒ (Node x t1 t2) ∈ S. This is a recursive
definition! A set S is built in steps: Leaf ∈ S and (Node x t1 t2) ∈ S,
where t1 and t2 in S in earlier steps.
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7 Lazy Evaluation

Evaluation strategy until now has been unimportant. Haskell is lazy!
Expressions are evaluated only when necessary. Subtle consequences
such as data-driven computation. Evaluation is based on function ap-
plication and substitution.

Evaluation based on function application and substitution. For ex-
ample f x y = x + y : f (9 − 3)( f 34 3) = (9 − 3) + ( f 34 3). In
Haskell, substitution occurs without argument evaluation. Evaluation
of arguments is postponed.

· · · = 6 + ( f 34 3) = 6 + (34 + 3) = 6 + 37 = 43.

Some expressions may never be evaluated, this can save arbitrarily
large amounts of time!
Potential Problem: Duplicated computation, e.g., square x = x * x

and say square (9-3) * (9-3) = 6 * (9-3) = 6 * 6 = 36. The same
expression 9 − 3 is evaluated twice here. Duplication can be avoided
by simultaneously reducing both occurrences. Implementation based
on sharing: terms represented as directed graphs so functions argu-
ments are evaluated only when needed and at most once.

Evaluation - pattern matching Arguments evaluated as far as needed
to determine pattern match. Consider the following example

f [] _ = 0 -- f1

f _ [] = 0 -- f2

f (a:_) (b:_) = a + b -- f3

Then, f [1 .. 3] [4 .. 6] is executed as follows

f [1 .. 3] [4 .. 6] -- does f1 match?

= f (1 : [2 .. 3]) [4 .. 6] -- No! does f2 match?

= f (1 : [2 .. 3]) (4 : [5 .. 6]) -- No! does f3 match?

= 1 + 4 -- Yes!

= 5

Evaluation - Guards Execution proceeds sequentially, until success.

f a b c

| a >= b && a >= c = a

| b >= a && a >= c = b

| otherwise = c

Example is:

f (2+3) (4-1) (3+9)
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?? (2+3) >= (4-1) && (2+3) >= (3+9) -- try 1st guard

?? 5 >= 3 && 5 >= (3+9) -- (2+3) is evaluated, but not (3+9)

?? True && 5 >= (3+9)

?? 5 >= (3+9)

?? 5 >= 12

?? False

?? 3 >= 5 && 5 >= 12 -- try 2nd guard, already partially evaluated

?? False && 5 >= 12

?? False -- No need to evaluated second part

?? otherwise -- final guard = (True)

= 12 -- c already evaluated.

Local Definitions Local definitions (with where) are also lazily evalu-
ated.

f a b

| notNil l = front l

| otherwise - b

where

l = [a .. b]

front (c:d:_) = c + d

front [c] = c

notNil [] = False

notNil _ = True

Then,

f 3 6

?? notNil l

where l = [3 .. 6]

?? = notNil ([3 .. 6])

?? notNil (3:[4 .. 6]

?? True

= front l

where

l = 3:[4..6]

= 3:4:[5..6]

= 3+4

= 7

Functions are evaluated top-down (outermost operator first) f e1( f e2 17),
and otherwise usually from left to right, depending on operator prece-
dence f e1 + f e2, f e1 + f e2 ∗ f e3. This kind of evaluation is a natural
as eager evaluation. But the consequences and possibilities are sur-
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prising.

Application 1: Data-Driven Programming Data can be generated lazily
(on demand), the result is improved runtime complexity. An example
is computing the minimal element of a list of elements. A Data-Driven
solution would be sorting the list and taking the sorted lists head. The
resulting program is just lmin = head . sort. The complexity is just
O(n), even though normally a sorting algorithm runs O(n log n), with
lazy evaluation, we do not need to sort all the elements.

Application 2: Infinite Data Lazy evaluation enables finite representa-
tion of infinite data. For example: infinite lists (streams). Can compute
with infinite data in finite time: describe an infinite stream and com-
pute with finite prefixes of it.
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Part II

Formal Methods

8 IMP Language

I will omit the concrete syntax for IMP, refer to lecture slides.

8.1 Meta-variables

Meta-variables denote an arbitrary element of a syntactic category, e.g.,
an arbitrary statement. In this section of the course, we will use the
following naming conventions for meta-variables3: 3 Meta-variables are written in math font,

while program variables are written in
typewriter font.• n for numerals

• x, y, z for variables
• e, e′, e1, e2 for arithmetic expressions (Aexp)
• b, b1, b2 for boolean expressions (Bexp)
• s, s′, s1, s2 for statements (Stm)

We use the naming conventions to avoid the need for explicit types,
for example when we write ∀x.P(x) we mean ∀x ∈ Var.P(x).

8.2 Meta-variables vs. Program Variables

Meta-variables x and y stand for arbitrary program variables, program
variables x and y are concrete variables in a program. We write ≡ for
syntactic equality on variables, statements, etc. x=y might evaluate to
true in some states, but x≡y is always false, as they are not syntacti-
cally equal. However, x ≡ y might be true, as they could denote the
same program variable.

8.3 Semantics of IMP expressions

A semantic function maps elements of syntactic categories (e.g. Nu-
merals) to elements of semantic categories (e.g. Values)

Semantics of Numerals The semantic function N : Numeral → Val maps
a numeral n to an integer value N JnK. For example, N J9K = 9, with
double digits we have N Jn 8K = N JnK× 10 + 8.

States The meaning of an expression depends on the values bound to
the variables that occur in it. A state is a total function State : Var →
Val. We use σ as a meta-variable for states.
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• We define a designated (constant) state σzero, in which all variables
have the value 0: σzero(x) = 0 for all x.

• Updating states: σ[y 7→ v] is the function that overrides the associa-
tion of y in σ by y 7→ v.

(σ[y 7→ v])(x) =

v x ≡ y

σ(x) x ̸≡ y

• Two states σ1 and σ2 are equal if they are equal as functions:

σ1 = σ2 ⇐⇒ ∀x.(σ1(x) = σ2(x))

Semantics of Arithmetic Expressions The sematic function A : Aexp →
State → Val maps an arithmetic expression e and a state σ to a value
AJeKσ.

• AJxKσ = σ(x)
• AJnKσ = N JnK
• AJe1 op e2K = AJe1Kσ op AJe2Kσ for op ∈ Op

where op is the operation Val × Val → Val corresponding to op.

Semantics of Boolean Expressions The semantic function B : Bexp →
State → Bool maps a boolean expression b and a state σ to a truth
value BJbKσ:

BJe1 op e2Kσ =

tt AJe1 op e2K

f f otherwise

BJb1 or b2Kσ =

tt BJb1Kσ = tt or BJb2Kσ = tt

f f otherwise

BJb1 and b2Kσ =

tt BJb1Kσ = tt and BJb2Kσ = tt

f f otherwise

BJnot bKσ =

tt BJbKσ = f f

f f otherwise

8.4 Properties of the Expression Semantics

The semantics is given by recursive definitions of functions A and B.
The values for composite elements are defined inductively in terms of
the immediate constituents. Since the decomposition of elements is
unique, the definition gives a well-defined functions. Inductive defin-
tions suggest proofs by structural induction.



formal methods and functional programming 40

9 Operational Semantics

Big-Step semantics describe how the overall results of the executions
are obtained. The system in this course is also called Natural Seman-
tics. Small-step semantics describe how the individual steps of the
computations take place. The system in this course is called structural
operational semantics. Alternative approaches exists, for example ab-
stract state machines.

9.1 Big-Step Semantics

Natural Semantics of IMP
Transition System
A transition system is a tuple (Γ, T,→) where

• Γ is a set of configurations
• T is a set of terminal configurations, T ⊆ Γ
• → is a transition relation, →⊆ Γ × Γ

Operational semantics include two types of configurations

• ⟨s, σ⟩ which represents the statement s is to be executed in state σ.
• σ, which represents a final state (terminal configuration)

The transition relation → describes how executions take place. Big-
step transitions are in the form ⟨s, σ⟩ → σ′.

Γ = {⟨s, σ⟩ | s ∈ Stm, σ ∈ State} ∪ State

T = State

→ ⊆ {⟨sσ⟩ | s ∈ Stm, σ ∈ State} × State

Big-Step Semantics of IMP

• skip does not modify the state
(SkipNS)

⟨skip, σ⟩ → σ

• x := e assigns the value of e to the variable x
(AssNS)

⟨x := e, σ⟩ → σ[x → AJeKσ]

• Sequential composition s : s′. First s is executed in state σ, leading
to σ′, then s′ is executed in state σ′, leading to σ′′.

⟨s, σ → σ′ ⟨s′, σ′⟩ → σ′′
(SeqNS)

⟨s; s′, σ⟩ → σ′′

• Conditional statement if b then s else s′ end
⟨s, σ⟩ → σ′

(IfTNS)
⟨if b then s else s′ end, σ⟩ → σ
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⟨s′, σ⟩ → σ′
(IfFNS)

⟨if b then s else s′ end, σ⟩ → σ

• Loop statement while b do s end.

⟨s, σ⟩ → σ′ ⟨while b do s end, σ⟩ → σ′′
(WhTNS)

⟨while b do s end, σ⟩ → σ′′

(WhFNS)
⟨while b do s end, σ⟩ → σ′′

Inference rule definitions are actually rule schemes. Meta-variables
in rule definitions are placeholders for statements, states, etc. A rule
scheme describes infinitely many rule instances. A rule is instantiated
when all meta-variables are replaced with syntactic elements. Below
is an instance of the assignment rule of natural semantics:

(AssNS)
⟨v := v + 1, σzero⟩ → σzero[v 7→ AJv + 1Kσzero]

Rule instances can be combined to derive a transition ⟨s, σ⟩ → σ′. The
result is a derivation tree T. The root of T would be ⟨s, σ⟩ → σ′,
denoted as root(T) ≡ ⟨s, σ⟩ → σ′. The leaves of T are axiom rule
instances, and the internal nodes of T are conclusions of rule instances
and have the corresponding premises as immediate children. The side-
conditions of all instantiated rules must be satisfied.

Γ⟨s, σ⟩ → σ′ ⇐⇒ ∃T.root(T) ≡ ⟨s, σ⟩ → σ′

Termination For an IMP statement s, we define termination in the
context of big-step semantics as follows. The execution of a statement
s in state σ terminates successfully iff there exists a state σ′ such that
⊢ ⟨s, σ⟩ → σ′, fails to terminate iff there is no state σ′ such that ⊢
⟨s, σ⟩ → σ′. For example, while true do skip end fails to terminate.

Semantic Equivalence
Two statements s1 and s2 are semantically equivalent (written
s1 ≃ s2) iff:

∀σ, σ′.(⊢ ⟨s1, σ⟩ → ⇐⇒ ⊢ ⟨s2, σ⟩ → σ′)

An example is while false do s end ≃ skip

The big-step semantics of IMP is deterministic. Formally,

∀s, σ, σ′, σ′′.(⊢ ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ ⊢ σ′′ =⇒ σ′ = σ′′
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9.2 Small-Step Semantics

Small-step semantics focuses attention on the individual steps of an
execution (execution of assignments, executions of if-conditions, while-
iterations, etc). Describing small steps of the execution allows one to
express the order of execution of individual steps. Can be used to
express interleaving computations or evaluation order for expressions.
Always describing the next small step allows one to express proper-
ties of non-terminating programs.

Transitions in SOS The configuration are the same for natural seman-
tics (⟨s, σ⟩ or σ). We use γ as a meta-variable for (terminal or non-
terminal) configurations. The transition relation →1 can have two
forms.

• ⟨s, σ →1 ⟨s′, σ′⟩: the execution of s from σ is not completed and the
remaining computation is expressed by the intermediate configura-
tion ⟨s′, σ′⟩.

• ⟨s, σ⟩ →1 σ′: the execution of s from σ has terminated and the final
state is σ′

A transition ⟨s, σ⟩ →1 γ describes the first step of the execution of s in
state σ.

Formally, the transition system is denoted as

Γ = {⟨s, σ⟩ | s ∈ Stm, σ ∈ State} ∪ State

T = State

→1⊆ {⟨s, σ⟩ | s ∈ Stm, σ ∈ State} × Γ

We say that a non-terminal configuration ⟨s, σ⟩ is stuck if there does
not exist a configuration γ such that ⟨s, σ⟩ →1 γ (terminal configura-
tions are never stuck). We will again define the transition relation →1

using a derivation system, and write ⊢ ⟨s, σ →1 γ to mean there exists
a finite derivation tree ending in ⟨s, σ⟩ →1 γ

Transitive Closure

⊢ ⟨s, σ →1 γ ⇐⇒ ∃T.root(T) ≡ ⟨s, σ⟩ →1 γ

SOS of IMP

• skip does not modify the state
(SkipSOS)

⟨skip, σ⟩ →1 σ

• x := e assigns the value of e to the variable x
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(AssSOS)
⟨x := e, σ⟩ →1 σ[x → AJeKσ]

• skip and assignment require only one step to reach a final state
• Sequential composition. Either s executes completely in one step,

or s is not executed completed after one step

⟨s, σ⟩ →1 σ′
(Seq1SOS)

⟨s; s′, σ⟩ →1 ⟨s′, σ′⟩

⟨s, σ⟩ →1 ⟨s′′, σ′⟩
(Seq2SOS)

⟨s; s′, σ⟩ →1 ⟨s′′; s′, σ′⟩
• Conditional statement if b then s1 else s2 end is to determine the

outcome of the test b, and thereby which branch to select.
(IfTSOS)

⟨if b then s else s′ end, σ⟩ →1 ⟨s, σ⟩
(IfFSOS)

⟨if b then s else s′ end, σ⟩ →1 ⟨s′, σ⟩
• Loop statement while b do s end.

(WhileSOS)
⟨while b do s end, σ⟩ →1 ⟨if b then s; while b do s else skip end, σ⟩

Multi=Step Executions A k-step execution, written γ →k
1 γ′ is an exe-

cution from γ to γ′ in exactly k steps where k ∈ N. Formally,

• γ →0
1 γ′ if and only if γ = γ′

• For k > 0, γ →k
1 γ′ if and only if there exists γ′′ such that both

⊢ γ →1 γ′′ and γ′′ →k−1
1 γ′

Derivation Sequences A derivation sequence is a (non-empty, finite or
infinite) sequence of configurations γ0, γ1, γ2, . . . , for which:

• γi →1
1 γi+1 for each 0 ≤ i such that i + 1 is in the range of the

sequence
• if the derivation sequence is finite, then the last configuration in the

sequence is either a terminal configuration of a stuck configuration

A derivation sequence shows a sequence of transitions which cannot
be extended with further transitions.

Termination The execution of a statement s in state σ terminates iff
there is a finite derivation sequence starting with ⟨s, σ⟩, runs forever
iff there is an infinite derivation sequence starting with ⟨s, σ⟩. Termi-
nates successfully iff ∃σ′.⟨s, σ⟩ →∗

1 σ′. Note these are properties of
configurations and not statements alone. For example, some while

loops terminate successfully in sometimes, and runs forever in others.
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Proving Properties of Derivation Sequences A finite derivation sequence
has a length which is a natural number. When reasoning about finite
derivation sequences, we usually use strong induction on the length of
a derivation sequence. More generally, we reason about a multi-step
execution γ →k

1 γ′ by strong induction on the number of steps k 4 4 This is unlike Big-Step semantics,
where we do induction on the shape of
the derivation tree.• Define P(k) ≡ "for all executions of length k, our property holds".

• Prove P(k) for arbitrary k, with the induction hypothesis ∀k′ <

k. P(k′)
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10 Axiomatic Semantics

10.1 Motivation

Formal semantics can be used to prove the correctness of a program.
Partial correctness expresses that if a program terminates then there
will be a certain relationship between the initial and the final state.
Total correctness express that a program will terminate and there will
be a certain relationship between the initial and the final state. Total
correctness = partial correctness + termination.

Consider the factorial statement

y := 1

while not x = 1 do

y := y * x

x := x - 1

end

Specification: The final value of y is the factorial of the initial value of
x. The statement is partially correct, it does not terminate for x < 1.
We can express the specification formally based ona formal semantics

∀σ, σ′ ⊢ ⟨ y := 1 while not x = 1 do y := y * x x := x - 1 end, σ⟩ → σ′ =⇒ σ′(y) = σ(x)!∧σ(x) > 0

This specification expresses partial correctness using big-step seman-
tics. We could have used small-step semantics to formulate the prop-
erty instead. We prove partial correctness in three steps.

• The body of the loop satisfies

∀σ, σ′′. ⊢ ⟨y:= y *x; x:= x-1, σ⟩ → σ′′ ∧σ′′(x) > 0 =⇒ σ(y)×σ(x)! = σ′′(y)×σ′′(x)!∧σ(x) > 0

• The loop satisfies

∀σ, σ′′ ⊢
⟨ while not x = 1 do y := y * x x := x - 1 end, σ⟩ → σ′′ =⇒ σ(y)× σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

• The whole statement is partially correct

∀σ, σ′ ⊢ ⟨ y := 1 while not x = 1 do y := y * x x := x - 1 end, σ⟩ → σ′ =⇒ σ′(y) = σ(x)!∧σ(x) > 0

However, proofs with formal semantics are too detailed to be practical.
Axiomatic semantics provides a way of constructing these proofs con-
veniently. Proofs can focus on essential properties of interest, decom-
posing the program into small parts happens naturally. The induction
for reasoning about loops is built into the semantic rule for loops.



formal methods and functional programming 46

10.2 Hoare Logic

Hoare Triples and Assertions Properties of programs are specified as
Hoare Triples

{P} s {Q}
where s is a statement and P, Q are assertions (about the state). Some
terminology:

• The assertion P is called the precondition of a triple {P} s {Q}
• The assertion Q is called the postcondition of a triple {P} s {Q}
• Assertions are boolean expressions, with some additional features.

We use P, Q, R as meta-variables over assertions.

The informal meaning of {P} s {Q} is:

If P evaluates to true in an initial state σ and if the execution of s
from σ terminates in a state σ′ then Q will evaluate to true in σ′

This meaning describes partial correctness, that is, termination is
not an essential property. It is also possible to assign different mean-
ings to Hoare Triples.

We allow assertions to contain logical variables, they may only oc-
cur in assertions. Logical variables are not program variables, and
may, thus not be accessed in programs; in particular, they are never
assigned to. Logical variables can be used to "save" values in the initial
state, so that they can be referred to later. This is the triple specifies
the factorial example. Note that we cannot use the program variable x

to specify Q since it refers to the final value of x, which is obviously
wrong.

{x = N}
y := 1; while not x = 1 do y := y * x; x := x - 1 end

{y = N! ∧ N > 0}

States map logical variables (and program variables) to their values.

Assertion Language Pre- and postconditions are assertions, that is, boolean
expressions plus logical variables. In particular, we will use program
boolean expressions b as assertions. It is common practice to use a
richer set of expressions for assertions, for instance, to include quan-
tification. We will use additional expressions when it is convenient.
We assume that the subsitution lemma from the exercises still holds
when we use an extended assertion language:

BJP[x 7→ e]Kσ = BJPKσ[x 7→ AJeKσ]

We will use the following convenient notations
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• "P1 ∧ P2" for "P1 and P2"
• "P1 ∨ P2" for "P1 or P2"
• "¬P" for "not P"

Derivation System We formalize an axiomatic semantics of IMP by de-
scribing the valid Hoare triples. This is done by a derivation system,
the derivation rules specify which triples can be derived for each state-
ment. The premises and conclusions of the derivation rules are Hoare
triples. Derivation trees are as defined before, using the rules pre-
sented later. Similary to the other derivation systems we have studied,
we write ⊢ {P} s {Q} if and only if there exists a (finite) derivation
tree ending in {P} s {Q}.

⊢ {P} s {Q} ⇐⇒ ∃.Root(T) ≡ {P} s {Q}

Here are the axiomatic semantics of IMP

• skip does not modify the state
(SkipAx)

{P} skip {Q}
• x := e assigns the value of e to the variable x

(AssAx)
{P[x 7→ e]} x := e {P}

Let σ be the initial state, precondition: BJP[x 7→ e]Kσ, which is
equivalent to BJPKσ[x 7→ AJeKσ] (substitution lemma). The final
state is σ[x 7→ AJeKσ]. Consequently, BJPK holds in the final state.

• Sequential composition

{P} s {Q} {Q} s′ {R}
(SeqAx)

{P} s; s′ {R}
• Conditional statement if b then s1 else s2 end

{b ∧ P} s {Q} {¬b ∧ P}s′{Q}
(IfAx)

{P} if b then s else s′ end {Q}
• Loop statement while b do s end.

{b ∧ P} s {P}
(WhileSOS)

{P} while b do s end {¬b ∧ P}
The assertion P is the loop invariant

The rules so far manipulate assertions syntactically, for example so far
we cannot derive the triple

{x = 4 ∧ y = 5} skip {y = 5 ∧ x = 4}

So we introduce semantic entailment, which expresses these reason-
ing steps: we write P |= Q iff "for all states σ, BJPKσ = tt implies
BJPKσ = tt. The rule of consequence allows semantic entailments in
derivations
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{P’} s {Q’}
ConsAx{P} s {Q}

Of course, with the side conditions if P |= P′ and Q′ |= Q.

Total Correctness We introduce an alternative form of Hoare Triple
{P} s {⇓ Q}. The informal meaning is "If P evaluates to true in the
initial state σ then the execution of s from σ terminates and Q will eval-
uate to true in the final state. This meaning describes total correctness,
that is, termination is required. We do not mix these triples with those
of partial correctness! The two form two separate axiomatic semantics
(and corresponding derivation systems). However, all total correctness
derivation rules are analogous to those for partial correctness, except
for the rule for loops.

Termination is proved using loop variants. A loop variant is an
expression that evaluates to a value in a well-founded set (for instance,
N) before each iteration. Each loop iteration must decrease the value
of the loop variant. The loop has to terminate when a minimal value
of the well-founded set is reached (or earlier than this).

For simplicity, we consider loop variants that evaluate to values in
N. We use arithmetic expressions e of IMP to represent loop variants.
We prove explicitly that the value of e will be non-negative before each
loop iteration. The intuition is: a correct loop variant provides an
upper bound on the number of loop iterations.

Total correctness derivation rule for loops:

{b ∧ P ∧ e = Z} s {⇓ P ∧ e < Z}
WhTotAx{P} while b do s end {⇓ ¬b ∧ P}

Of course, with the side condition if b ∧ P |= 0 < e, where Z is a fresh
logical variable not used in P.

10.3 Soundness and Completeness

• Soundness If a property can be proved then it does indeed hold.
An unsound derivation system is useless.

⊢ {P} s {Q} =⇒ |= {P} s {Q}

• Completeness If a property does hold then it can be proved. With
an incomplete derivation system, a program might be correct, but
we cannot prove it.

|= {P} s {Q} ⊢ {P} s {Q}
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11 Modeling

Model checking is an automated technique that, given a finite-
state model of a system and a formal property, systematically
checks whether this property holds for (a given state in) that
model.

Model checkers enumerate all possible states of a system:

• Explicit state model checking: represent state explicitly through
concrete values.

• Symbolic model checking: represent state through boolean formu-
las.

We will focus on explicit state model checking.

Model Checking Process

• Modeling phase: Model the system under considering using the
description language of your model checker (possibly a program-
ming language). Formalize the properties to be checked.

• Running phase: Run the model checker to check the validity of the
property in the system model.

• Analysis phase: If property is satisfied, celebrate and move on to
next property, if violated analyze and counterexample, if out of
memory reduce model and try again.

We model systems as communicating sequential processes (agents),
there are a finite number of processes, and they execute in an inter-
leaved way. Processes can communicate via shared variables, syn-
chronous message passing, asynchronous message passing.

11.1 Protocol Meta Language Promela

Input language of the Spin model checker. Main objects are processes,
channels, and variables. C-like syntax. Spin can "execute" (simulate
models).

Constant declarations

#define N 5

mtype = { ack, req };

Structure declarations

typedef vector { int x; int y};

Global channel declarations
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chan buf = [2] of { int };

Global variable declarations

byte counter;

Process declarations

proctype myProc(int p) { ... }

Promela Process Declarations Simple form proctype myProc(int p) ...

The body consists of a sequence of variable declarations, channel dec-
larations, and statements. No arrays as parameters.

Active processes (start N instances of myProc in the initial state.

active [N] proctype myProc(...) {...}

init process is started in the initial state.

Type Value Range
bit or bool 0...1

byte 0...255

short -215...215 − 1
int -231...231 − 1

Table 1. Primitive Types (No floats or
mathematical (unbounded) integers

Promela Types User-defined types

• Arrays: int name[4]

• Structures
• Type of symbolic constants: mtype

Channel type: chan

Initial State
Global Variables are specified initial value or default value. Global
Channels are empty. init and processes declared active.

State Transitions A statement can be executable or blocked.

• Send is blocked if channel is full
• s1; s2 is blocked if s1 is blocked
• timeout is executable if all other statements are blocked

A transition is made in three steps:

• Determine all executable statements of all active processes. If
no executable statement exists, transition system gets stuck

• Choose non-deterministically one of the executable statements.
Non-determinism models concurrency through interleaving.
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• Change the state according to the chosen statement.

11.2 State Space of Programs

Number of states for Sequential Programs

#program locations × ∏
variablex

|dom(x)|

where |dom(x)| denotes the number of possible values of variable
x.

The number of states grows exponentially in the number of
variables. State space explosion!

Number of states for Concurrent Programs. The number of states
P ≡ P1∥ . . . ∥PN is at most

#states of P1 × · · · × #states of PN =

N

∏
i=1

(#program locationsi ∏
variablexi

|dom(xi)|)

where |dom(x)| denotes the number of possible values of variable
x.

The number of states grows exponentially in the number of
variables. State space explosion!

Number of states for Promela Programs. The number of states of
a system with N processes and K channels is at most

#program locations × ∏
variablexi

|dom(xi)| ×
K

∏
j=1

|dom(cj)|cap(cj)

where |dom(cj)| denotes the number of possible messages of chan-
nel cj, and cap(cj) is the capacity (buffer size) of channel cj. Num-
ber of states grows exponentially in the number of capacity of
channels, state space explosion!

11.3 Promela Statements

• skip does not change state (except location counter), always exe-
cutable.

• timeout does not change the state (except location counter), exe-
cutable if all other statements in the system are blocked.
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• assert(E) aborts execution if expression E evaluates to zero; other-
wise equivalent to skip, always executable.

• Assignment
– x = E assigns the value of E to variable x.
– a[n] = E assigns the value of E to an array element a[n]
– Always executable.

• Sequential composition s1;s2 is executable if s1 is executable.
• Expression statement

– Evaluates expression E

– Executable if E evaluates to value different from zero
– E must not change state (no side effects)
– Examples:

run myProcess;

x > 0;

• Selection
if

:: s1 /* option 1 */

:: ...

:: sn /* option n */

fi

– Executable if at least one of its options is executable.
– Chooses an option non-deterministically and executes.
– Statement else is executable if no other option is executable (may

occur at most in one option).
• Repetition is executable if at least one of its options is executable.

Choose repeatedly an option non-deterministically and executes it.
Terminates when a break or goto is executed.

do

:: s1 /* option 1 */

:: ...

:: sn /* option n */

od

• Atomic. Basic statements are executed atomically (not interleaving
during execution skip, timeout, assert, assignment expression
statements are atomic. For complex statements, atomic s exe-
cutes s atomically. Executable if the first statement of s is exe-
cutable. If any other statement within s blocks once the execution
of s has started, atomicity is lost. Consider the example with Binary
semaphores (lock). The first block is a wrong example

bit locked; /* global */
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/* lock */

locked == 0;

locked = 1;

/* critical section */

locked = 0; /* unlock */

It is wrong as it allows interleaving executions between checking if
the lock is available and setting it to 1. The correct approach would
be.

bit locked; /* global */

/* lock */

atomic {

locked == 0;

locked = 1;

}

/* critical section */

locked = 0; /* unlock */

• Macros. Promela does not contain procedures. Effect can be achieved
using macros.

inline lock() {

atomic {

locked == 0;

locked = 1

}

}

A macro just defines a replacement text for a symbolic name, possi-
bly with parameters. However, no new variable scope, no recursion
and no return values, as it is just a semantic representation for text.
Define macro globally before its first use.

• Channels. chan ch = [d] of t1, ... , tn declares a channel.
Channel can buffer up to d messages. If d > 0 then we have a
buffered channel (FIFO). If d = 0 then we have an unbuffered chan-
nel (rendex-vous). Each message is a tuple whose elements have
types t1, ..., tn
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12 Linear Temporal Logic

12.1 Linear-Time Properties

Transition Systems Revisited We use a slightly different definition here
(than earlier in the courses).

A finite transition system is a tuple (Γ, σI ,→)

• Γ: a finite set of configurations
• σI : an initial configuration, σI ∈ Γ
• →: a transition relation, →⊆ Γ × Γ

The difference is that we fixed the initial configurations, (transition
systems model only one program/system, not all programs of a pro-
gramming language), and also we omit terminal configurations from
the definition. Termination can be modelled by transition to a special
extra sink state (which allows further transitions only back to itself).

Transition System of a Promela Model

• Configurations: states (see previous section) - states that include
global variables and channels and for every active process the local
variables, channels and the location counter.

• Initial configuration: initial state (see previous section).
• Transition relation: defined by operational semantics of statements.
• A Promela model has a finite number of states.

Computations

• Sω is the set of infinite sequences of elements of set S, s[i] denotes
the i-th element of the sequence s ∈ Sω.

• γ ∈ Γω is a computation of a transition system if:
– γ[0] = σI

– γ[i] → γ[i+1] (for all i ≥ 0)
– Note: we use σ to range over the states Γ of a transition system.
– Note (notation above): if γ = σ0σ1σ2σ3 . . . then γ[i] = σi

• C(TS) is the set of all computations of a transition system TS.

Linear-Time Properties Linear-time properties (LT-properties) can be
used to specify the permitted computations of a transition system. A
linear-time property P over Γ is a subset of Γω. P specifies a particular
set of infinite sequences of configurations. TS satisfies LT-property P
(over Γ):

TS |= P if and only if C(TS) ⊆ P

All computations of TS belong to the set P.
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By contrast: branching-time properties (not in this course) can also
express the existence of a computation.

LT-Properties: Example
All opened files must be closed eventually:

P = {γ ∈ Γω | ∀i ≥ 0 : γ[i](o) = 1 =⇒ ∃n > 0 : γ[i+n](o) = 0}

However, the explicit representation above (defining the set of se-
quences) is not convenient. Logical formalism needed to simplify spec-
ification of LT-properties.

From Configurations to (Sets of) Propositions For a transition system TS,
we additionally specify a set AP of atomic propositions (of our choice)

• An atomic proposition is a proposition containing no logical con-
nectives.

• Example: AP = {opened, closed} (for files)
• Example: AP = {x > 0, y ≤ x}

We must provide a labeling function that maps configurations to sets
of atomic propositions from AP

• L : Γ → P(AP)

• Example: L(σ) =


{open} if σ(o) = 1

{closed} if σ(o) = 0

{} otherwise

We call L(σ) an abstract state. From now on, we consider AP and L to
be a part of the transition system.

Traces A trace is an abstraction of a computation. Observe only the
propositions of each state, not the concrete state itself. Infinite se-
quence of abstract states (P(AP)ω). Namely

• t ∈ P(AP)ω is a trace of a transition system TS if t = L(γ[0])L(γ[1])L(γ[2]) . . .
and γ is a computation of TS.

• T (TS) is the set of all traces of a transition system TS.
• LT-properties are typically specified over infinite sequences of ab-

stract states, rather than over sequences of configurations.

P = {t ∈ P(AP)ω | ∀i ≥ 0 : γ[i](o) = 1 =⇒ ∃n > 0 : γ[i+n](o) = 0}

Safety Properties The intuition is "something bad is never allowed to
happen (and can’t be fixed)"
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An LT-property P is a safety property if for all infinite sequences
t ∈ P(AP)ω: if t ̸∈ P then there is a finite prefix t̂ of t such that
for every infinite sequence t′ with prefix t̂, t′ ̸∈ P.

t̂ is called a bad prefix; essentially, this finite sequence of steps al-
ready violates the property (whatever happens afterwards). Safety
properties are violated in finite time and cannot be repaired. For ex-
ample:

• State properties, for instance, invariance

P = {t ∈ P(AP)ω | ∀i ≥ 0 : open ∈ t[i] ∨ closed ∈ t[i]}

• "Money can be withdrawn only after correct PIN has been entered"

Liveness Properties The intuition is "something good will happen even-
tually", and "if the good thing has not happened yet, it could happen
in the future.

An LT-property P is a liveness property if for every finite se-
quences t̂ ∈ P(AP)∗ is a prefix on an infinite sequence t ∈ P. A
liveness property does not rule out any prefix. Every finite prefix
can be extended to an infinite sequence that is in P.

Liveness properties are violated in infinite time. Some examples:

• All opened files must be closed eventually

P = {t ∈ P(AP)ω | ∀i ≥ 0 : γ[i](o) = 1 =⇒ ∃n > 0 : γ[i+n](o) = 0}

• "The program terminates eventually"

12.2 Linear Temporal Logic

Linear Temporal Logic (LTL) allows us to formalize LT-properties of
traces in a convenient and succinct way. We will see syntax and se-
mantics for LTL (no inference rules, etc.) Whether or not the traces of
a finite transition system satisfy an LTL formula is decidable.

Basic Operators Syntax:

ϕ = p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ⃝ ϕ

where p is a proposition from a chosen set of atomic propositions
AP ̸= ∅, ϕUψ means "ϕ until ψ", and ⃝ϕ means next.



formal methods and functional programming 57

LTL Semantics
t |= ϕ expresses that trace t ∈ P(AP)ω satisfies LTL formula ϕ

t |= p iff p ∈ t[0]

t |= ¬ϕ iff not t |= ϕ

t |= ϕ ∧ ψ iff t |= ϕ and t |= ψ

t |= ϕUψ iff there is a k ≥ 0 with t≥k |= ψ

and t≥j |= ϕ for all j such that 0 ≤ j < k

t |= ⃝ϕ iff t≥1 |= ϕ

where t≥i is the suffix of t starting at ti.

Derived Operators

• True, False, ∨, =⇒ , ⇐= , ⇐⇒ defined as usual.
• Eventually: ♢ϕ ≡ (True Uϕ)

• Always (from now): □ϕ ≡ ¬♢¬ϕ

Precedence: unary operators always have the highest precedence,
usually we use parentheses to explicitly clarify other ambiguities.

Useful Specification Patterns
Strong Invariant: □ψ

• ψ always holds
• A file is always opened or closed: □(opened ∨ closed)

• Safety property

Monotone Invariant: □(ψ =⇒ □ψ)

• Once ψ is true, then ψ is always true
• For example, once information is public, it can never become

secret again (but it may always stay secret): (public =⇒
□public)

• Safety property

Establishing an Invariant: ♢□ψ

• Eventually ψ will hold
• Example: system initialization starts server: ♢□serverRunning

• Liveness property
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Responsiveness: □(ψ =⇒ ♢ϕ)

• Every time that ψ holds, ϕ will eventually hold.
• For example, all opened files must be closed eventually:

□(open =⇒ ♢closed)

• Liveness property

Fairness: □♢ψ

• ψ holds infinitely often
• For example, producer does not wait infinitely long before en-

tering the critical section:

□♢critical

• Liveness property

LTL Model Checking Problem
Given a finite transition system TS and an LTL formula ϕ decide
whether t |= ϕ for all t ∈ T (TS)

We need to check inclusion of traces: LTL formula ϕ describes a set
of traces P(ϕ), we need to determine whether or not T (TS) ⊆ P(ϕ).
Naively searching all traces is not an option (infinite length).

12.3 Checking Safety Properties

Automatic checking of LTL formulas is non-trivial because traces are
infinite. For safety properties, recall that any violation can be ob-
served after finite prefix. The idea is to characterize all finite prefixes
of the traces of a transition system using a finite automation and check
whether any of them violates the safety property. For liveness prop-
erties, we need other strategies.

Finite Automaton for Finite Prefixes
Given a transition system TS = (Γ, σI ,→), we define an NFA
FATS characterizing all finite prefixes Tfin(TS) of the traces of
TS. The automaton FATS = (Q, Σ, δ, Q0, F)

• Q = Γ ∪ {0} where σ0 ̸∈ Γ
• Σ = P(AP)
• δ = {(σ, p, σ′) | σ → σ′ ∧ p = L(σ′)} ∪ {(σ0, p, σI) | p = L(σI)}
• Q0 = {σ0}
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• F = Q (accept any prefix of a trace)

Regular Safety Properties
A safety property is regular if its bad prefixes are described by a
regular language over the alphabet P(AP). Every invariant over
AP is a regular safety property. For the property defined by □p,
all bad prefixes start with S∗T where S describes any subset of
P(AP) that contains p, and T any subset that does not contain p.
For example, bad prefixes for □ open are described by

({open}|{open, closed})∗({}|{closed})

Non-regular safety properties also exist. For example: Vending ma-
chine - at least as many coins inserted as drinks dispensed. Bad pre-
fixes: regular languages "cannot count".

To check for regular safety properties, we follow the steps:

1. Describe finite prefixes Tfin(TS) by finite automaton FATS.
2. Describe bad prefixes of regular safety property P by finite automa-

ton FAP̄.
3. Construct finite automaton for product for FATS and FA p̄.
4. Check if the resulting automaton has any reachable accepting states

• If not, the property P is never violated in traces of TS.
• If yes, the property P is violated.
• Moreover, each word in the accepted language of the product

automaton is a counter example.

ω-Regular Languages Regular expressions denote languages of finite
words, ω-regular expressions denote languages of infinite words. An
ω-regular expression G has the form

G = E1Fω
1 + · · ·+ EnFω

n (1 ≤ n)

where Ei and Fi are regular expressions and ϵ ̸∈ L(Fi).

L(Fω) = {w1w2w3 . . . | ∀i.wi ∈ L(F)}

Büchi Automata
Büchi automata are similar to finite automata, but accept infi-
nite words. The class of languages accepted by non-deterministic
Büchi automata agrees with the class of ω-regular languages. A
non-deterministic Büchi automaton (NBA) is a tuple (Q, Σ, δQ0, F)

• Q is a finite set of states
• Σ is a finite alphabet
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• δ is a transition relation, δ ⊆ Q × Σ × Q
• Q0 ⊆ Q is a set of initial states
• F ⊆ Q is a set of accepting states

A run of an NBA accepts its input if it passes infinitely often
through an accepting state. It also enjoys many of the properties
of finite automata. We can construct the product of two NBA,
emptiness is decidable.

12.4 LTL Model Checking

1. Describe traces T (TS) by NBA BATS.
2. For an LTL formula ϕ, construct NBA BA¬ϕ that accepts the traces

characterized by ¬ϕ (bad traces).
3. Construct NBA for product of BATS and BA¬ϕ

4. Check whether the language accepted by product NBA is empty. If
the language is non-empty, property ϕ is violated. Each word in the
language is a counter-example.

For a finite transition system TS and an LTL formula ϕ, the model
checking problem TS |= ϕ is solvable in O(|TS| × 2|ϕ|).

Where |TS| is the size of the transition system, which grows expo-
nentially in the number of variables, processes, and channels. |ϕ| is
the size of ϕ; exponential complexity comes from the construction of
BA¬ϕ
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