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1 Introduction to Graph Theory A B

CD

Illustration of the Königsberg Bridge
Problem as a (multi)-graph.

The Königsberg Bridge Problem The city occupied two islands plus ar-
eas on both banks. These regions were linked by seven bridges. Euler
asked himself in 1736 whether he can walk across all seven bridges
exactly once? The answer is no!

The first question we should ask ourselves is, given a string of let-
ters, how can we verify whether it is a valid walk?

• We can store the number of edges between each vertex.
• When you enter a vertex, you must leave it in the next step! There-

fore, we can say there is a natural pairing of all the edges used (parity
problem). This holds for any vertex except for the first and the last.

To prove that there is no such solution, we do this by contradiction.
First, we prove a claim.

Claim: If a vertex X is not at the start or end, then the number of
edges incident to X is even.

Proof. Let X be some arbitrary vertex, and assume that X is not at the
start or the end. Then, given a walk of length k as a sequence of strings,
we note that there are not two consecutive X’s in the walk. Namely,
for X /∈ {Y1, . . . , Yk} that appears before an X, and X /∈ {Z1, . . . Zk} that
appear after, the walk takes the form of

Y1XZ1 . . . Y2XZ2 . . . YkXZk (1)

Then, it is clear we can see that there are 2k edges incident to X.

Now we can proof the original claim, that there is no such solution
to the question Euler asked.

Proof. For the sake of contradiction, assume that there was such a
walk. Then, in the original Königsberg problem as illustrated, all ver-
ticies have an odd number of edges, by the claim we know that all
would have to start/end the sequence of walk, which is a contradic-
tion to the original claim.

1.1 Basic Definitions

Graph (Informal)
A graph G is consists of a finite set V called the verticies and
subset E of the unordered pairs of verticies in V.
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Note that this definition forbits directed graphs, multiple edges (set
restriction), and self loops.

A B

CD

E

A random undirected graph. Here we

have V(G) = {A, B, C, D, E} and E(G) =

{{A, B},{A, C},{B, C},{C, D},{D, A}}
but for simplicity E(G) =

{AB, AC, BC, CD, DA}.

Graph
A graph G is a pair G = (V, E) where V is a finite set, and E ⊆
{{v, w} ∶ v, w ∈ V ∧ v ≠ w}. It is common to denote E as V(2),
which represents all possible edges in a graph with vertex set V.
The (2) denotes a binary relation, we values > 2 we would have
hypergraphs.

Vertex, Edge set
Given a graph G, we use V(G) to denote the vertex set, E(G) to
denote the edge set when we need disambiguation.

Order
The order of a graph G is denote as the number of verticies ∣G∣ ∶=
∣V(G)∣

Size
The size of a graph G is denote as the number of edges e(G) ∶=
∣E(G)∣

If ∣G∣ = n, then the possible values for e(G) range from 0 ≤ e(G) ≤
n(n−1)

2 .

A

B

C

D

E

F

A fully connected graph.

Neighborhood
The neighborhood of v ∈ V is defined as

Γ(v) = N(v) = {w ∈ V ∶ vw ∈ E} (2)

if Γ(v) = ∅ we call it an isolated vertex.

Degree
For v ∈ V, the degree of v is dv = ∣Γ(v)∣.

Complete Graph
A complete graph Kn has vertex set V = {1, . . . n} and edge set
V(2) = {ij ∶ 1 ≤ j < j ≤ n} which is also equivalent to {ij ∶ 1 ≤ j, j,≤
n, i ≠ j}



mat332h1: introduction to graph theory 3

Empty Graph
An empty graph Kn has vertex set V = {1, . . . n} and edge set E = ∅.

Complement
Given a graph G = (V, E), we define the complement of G as
G = (V, V2/E)

A B

CD

G

A B

CD

G

Figure 1. An example of a graph G and
its complement G.

Path Graph
A path graph Pn has the vertex set V = {1, . . . n} and edge set
E = {i(i + 1) ∶ 1 ≤ i ≤ n − 1}∪ {n1}

1 2 3 4
Figure 2. An example of a path graph
P4.

Cycle Graph
A path graph Pn has the vertex set V = {1, . . . n} and edge set
E = {i(i + 1) ∶ 1 ≤ i ≤ n − 1}∪ {n1}

1

2

3

4

56

7

8

Figure 3. An example of a 3-regular
graph with 8 vertices.

K-Regular Graph
A k-regular graph is a graph G where dV = k, for all v ∈ V.
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1.2 The Handshaking Lemma

Notice that we could not for example, draw a 3-Regular 9 Vertex
Graph. This is restricted due to the handshaking lemma.

Handshaking Lemma
For a graph G = (V, E), the sum of the degrees of all vertices in
the graph is equal to twice the number of edges. We have that

2e(G) = ∑
v∈V(G)

dv (3)

or

e(G) = 1
2
∑

v∈V(G)
dv (4)

which can be understood as the parity constraint.

1 2

3

45

6

Figure 4. The sum of all degrees is
16, applying the handshaking lemma the
number of edges is indeed 8.

This introduces two different proof methods. The first proof method
is by double counting, where the idea is to count the number of pairs
(v, e) with v ∈ V, e ∈ E and v ∈ e (meaning v is incident to e).

Proof. Let G = (V, E), we count the number of pairs (v, e) with v ∈ V,
e ∈ E and v ∈ e. Indeed, for a fixed v, the number of edges incident to
it nv,e is the number of pairs (v, e) = dv. Therefore, the number of such
pairs, denoted as N is

N = ∑
v∈V

nv,e (5)

= ∑
v∈V

dv (6)

=∑
e∈E

nv,e (7)

=∑
e∈E

2 (8)

= 2e(G) (9)

Notice that ∑e∈E nv,e = ∑e∈E 2 since we are summing over each edge,
and by definition each edge will only be incident 2 vertices only.

An intuitive way to understand the double counting proof is via
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the incident matrix (which is flipped around as to the adjacency ma-
trix). For the graph illustrated by fig. 4, we have the following incident
matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0
1 1 0 0 1 0 1 0
0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The double counting proof is asking "how many 1’s are there in this
matrix", notice that one way is add by row (sum of degree) but notice
if we do this column wise it is just a sum over 2.

The second proof technique is via (strong) induction.

Proof. Let G = (V, E) be a graph. We proof by strong induction over
the number of edges e(G).

Base Case: e(G) = 0. Then, we can take G = Kn where Kn is any
empty graph. We have (by definition of the empty graph)

2e(Kn) = 0 = ∑
v∈V(Kn)

dv = 0 (11)

which completes the base case.

Step Case: As our inductive hypothesis, assume that for any graph
H where e(H) < e(G) that the result (handshaking lemma) holds. We
want to show that 2e(G) = ∑v∈V(G) dv. Pick an edge e = xy, then by our
inductive hypothesis we know 1 1 We introduce this definition later but

for now G − e denotes the graph G with
the edge e removed.2e(G − e) = ∑

v∈V(G−e)
dv,G−e (12)

This is equivalent to

2(e(G)− 1) = dx,G−e + dy,G−e + ∑
v∈V/{x,y}

dv,G−e (13)

Therefore,

2e(G) = 2(e(G)− 1)+ 2 (14)

= dx,G−e + dy,G−e + ∑
v∈V/{x,y}

dv,G−e + 2 (15)

= ∑
v∈V(G)

dv,G (16)
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Similarly, we could’ve chosen to induct of the number of vertices,
where the base case would be a graph with no vertices, and the step
case to assume true on a graph G − v.

Removals
Let G = (V, E) be a graph, we remove an edge e ∈ E and define
G − e ∶= (v, E/{e}).
Similarly, if v ∈ V, we remove a vertex v ∈ V we define G − v ∶=
(V/{v}, E/{vw ∶ vw ∈ E})

Subgraphs
A graph H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).

Induced Subgraphs
Let U ⊆ V(G) be a subset of the vertex set of a graph G. The graph
H = G[U] is an induced subgraph of G if:

• V(H) = U, and

• E(H) = {vw ∈ E(G) ∶ v, w ∈ U}.

This means that H is formed by taking all vertices in U and all
edges between them that appear in G.

1

2

3

4

5

6

1

2

3 1

2

3

Figure 5. Left: The original graph G,
Middle: H1 a subgraph but not induced,
Right H2, an induced subgraph, where G
is essentially restricted to vertices 1, 2, 3.
Therefore, if you include all the vertices
you get the original graph back.

1.3 Isomorphism

The goal of this section is to ask the question whether a graph G con-
tains a copy of the graph H. This means that we will need to talk about
graphs without labels!

Isomorphism
Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. An isomorphism
f ∶ G1 → G2 is a bijection f ∶ V(G1) → V(G2) such that wv ∈
E(G1) ⇐⇒ f (v) f (w) ∈ E(G2). We say that G1 is isomorphic to
G2, written G1 ≅ G2, if there is an isomorphism from G1 to G2.
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Notice that ≅ is an equivalence relation for graphs, namely:

1. Reflexivivty: G ≅ G.
2. Symmetric: If f ∶ V(G1)→ V(G2) is an isomorphism from G1 to G2,

then f−1 is an isomorphism from G2 to G1 by definition of isomor-
phism.

3. Transitivity: G1 ≅ G2 and G2 ≅ G3, then G1 ≅ G3 .

Consider the graphs in fig. 6, indeed, we can find a bijection f (x) =
x + 6, f−1(y) = y − 6 to find the isomorphism between G1 and G2.

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6. Left: The original graph G1,
Right: another graph G2, we can find a
mapping that maps the vertices from G1
to G2, in fact, the mapping is not unique!

There are two techniques to show that this is an isomorphism. First
we assume that there exists a bijection on vertices.

1. If you have vw ∈ E(G1) then f (v) f (w) ∈ E(G2) and if xy ∈ E(G2)
then f−1(x) f−1(y) ∈ E(G1)

2. If vw ∈ E(G1) then f (v) f (w) ∈ E(G2) and if vw /∈ E(G1) then f (v) f (w) /∈
E(G2).

We say that a graph G contains a copy of a graph H if H is iso-
morphic to a subgraph of G.

We say a graph G contains an induced copy of a graph H if H is
an induced subgraph of G.

1

2

3

4

5

6

A

B

C

Figure 7. Left: Graph G1 with a high-
lighted subgraph isomorphic to graph
H, Right: Graph G2 also containing a
copy of H. We say G1 contains a copy of
H since H is isomorphic to a subgraph
of G1. For example, we could map ABC
to 16X where X is any other vertex.

A clique is a subset U ⊆ V(G) such that G[U] is complete.

Can think of this as a collection of friends on Facebook.
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An independent set is a subset U ⊆ V(G) such that G[U] is empty.

Similarly, we can think of this as strangers which haven’t met.

Now suppose we have a graph G and its complement G. A clique
in G turns into an independent set, an independent set in G turns into
a clique.

A

B C
D

A

B C
D

Figure 8. Graph G (left) and its comple-
ment G (right). The triangle (clique) in
G becomes an independent set in G, and
the isolated vertex in G becomes a clique
with the other vertices in G.

We can split up graphs into connected components, this allows us
to reduce any graph problems into connected graphs!.

1

2 3

4

56 1

2

3

4

5

6

Figure 9. What makes these graphs dif-
ferent? We can talk about walks! For ex-
ample a walk 123456 is valid on the right
but not possible on the left.

There is a walk from v to w where a walk from v to w is a sequence
of vertices X1, X2, . . . , Xk where X1 = v, Xk = w and xixi+1 ∈ E(G)
for i ∈ {1, . . . k − 1}.

Linkage ∼ is an equivalence relation of V(G).

1. Reflexivity v ∼ v indeed, the walk is v is satisfied.
2. Symmetry v ∼ w Ô⇒ w ∼ v.
3. Transitivity x ∼ y and y ∼ z Ô⇒ x ∼ z.

Corllary: For all vertices of G, decompose independent set V(G) =
V1 ∐V2 ∐ ⋅ ⋅ ⋅ ∐Vk, if x, y ∈ Vi then x ∼ y. If x ∈ Vi and y ∈ Vj with i ≠ j
then x /∼ y.

Theorem: Every graph G has a unique decomposition G = G1 ∐
G2 ∐ ⋅ ⋅ ⋅ ∐Gk where each Gi is connected and non-empty.

Note that a graph is connected if every pair of vertices is linked.
The following is the existence proof:

Proof. Let G = (V, E) be arbitrary graphs, we show that the vertex
and edge are subset First, note V(G) = V1 ∐ ⋅ ⋅ ⋅ ∐ Vk (by definition).
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Then, if xy ∈ E(G[V1]∐ ⋅ ⋅ ⋅ ∐G[Vk]). Then, xy ∈ E(G[V1]) for some i for
xy ∈ E(G).

Suppose V = V1 ∐ ⋅ ⋅ ⋅ ∐ Vk with link equivalences. Conversely, if
xy ∈ E(G), then if x, y are in the same part Vi then xy ∈ E(G[Vi])
by definition of G[Vi], so xy ∈ E(G[V1]∐ ⋅ ⋅ ⋅ ∐G[Vk])).

If x ∈ Vi, y ∈ Vj and i ≠ j, note that xy ∈ E(G) Ô⇒ xy are linked,
which means they must come from the same part, so i = j. Contradic-
tion!.

Proof for uniqueness.

Proof. Left as an exercise.

Define ∆(G) =maxv∈V(G) dv which is the maximum degree of any
vertex v in a graph G.

Theorem: ∆(G) ≤ 2 if and only if G is a disjoint union of paths
and cycles.

Proof. Ô⇒ : Easy! Paths and cycles violate this.

⇐Ô : G = G1 ∐G2 ∐ ⋅ ⋅ ⋅ ∐Gk. By the connected component decom-
position, it suffices to show the theorem is true connected graphs. We
show this by considering the longest path it G, call the path X1 . . . Xk.
Let v ∈ V(G)/X1 . . . Xk, vX1 /∈ E(G),∀2 ≤ i ≤ k − 1 because dvXi ≥ 3. For
i ∈ {1, k}, vXi, vXk /∈ E(G) because then vX1 . . . Xk or X1 . . . Xkv would
be a bigger path, which implies X1 . . . Xk is connected component of
G, which also implies X1 . . . Xk are all vertices of G.

Theorem: If x ∼ y, then there is a path from x to y.

Proof. Consider the smallest walk from x to y. If this walk is already
a path then the theorem holds. If it’s not a path, consider the walk
v1 . . . vi . . . vj . . . vk where v1 = x and vk = y. By assumption, we know
there is some vi, vj with vi = vj but i ≠ j. Assume i < j then this requires
a walk vi+1 . . . vj, however, the we know this is not the smallest so we
can reduce it to v1 . . . vivj+1vj+2 . . . vk.
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2 Trees and Distance

2.1 Basic Properties

In class, we observed the following properties for trees:

1. A tree G = (V, E) has ∣G∣− 1 edges.
2. Trees must be acyclic!
3. It has the minimum set of edges such that it is a connected compo-

nent.
4. Leaves have degree of 1.

This means that the empty graph is not a tree because it is not con-
nected!

A graph with no cycle is acyclic. A forest is an acyclic graph.
A leaf is a vertex of degree 1. A spanning subgraph of G is a
subgraph with vertex set V(G). A spanning tree is a spanning
subgraph that is a tree.

Theorem: Every tree with at least 2 vertices has at least two leaves.

Proof. Consider the longest path in the tree. The start of the path v1

and the end of the path vn can only connect to other vertices on the
path. However, if we add another vertex connecting v1 or vn, it would
create a cycle, which contradicts the definition of a tree. Therefore,
start and end must be leaves.

Theorem: If G is a connected graph, then G contains a spanning
tree T ⊆ G.

Proof. Start with G keep removing while retaining the property of be-
ing connected to get a subgraph T which is minimally connected.

Theorem: The following are equivalent

1. G is a tree.
2. G is connected and e(G) = ∣G∣− 1.
3. G is minimally connected (G − e is disconnected for all e ∈

E(G)).
4. G is maximally acyclic (G + e has a cycle for all e /∈ E(G)).

Proof. 1) Ô⇒ 2):
Assume that G is a tree, then by definition of a tree we get that G is
connected. To prove the second part of 2), we have the claim:
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Claim: Given a graph H and e /∈ E(H), e = xy, x, y ∈ V(H). Either
x, y are in the connected component, or x, y are in different connected
components. In the first case, the number of connected components
in H is equal to the number of connected components in H + e. In the
second case, the number of connected components of H is one more
of H + e.

So now, we can build G one edge at a time, starting with Kn where
n = ∣G∣. Note that the starting number of connected components is n. If
we add an edge and Gi is the current graph 2. We cannot add an edge 2 Gi denotes that i edges have been

added.into one of Gi’s connected components because then we would create
a cycle because if an edge e = xy then there is already a path from x tp
y but Pxy ∪ xy is a cycle, contradiction!

Consequently, in the second case of the claim where the number
of connected components drop by 1, therefore the number of edges
added in is equal to the amount of connected components (which is
n − 1).

Proof. 2) Ô⇒ 1)
Now, assume that G is connected and e(G) = ∣G∣ − 1. Remove edges
from G one at a time while preserving connectivity. You will end up
with a graph H that is connected, and acyclic, which by definition is a
tree! As a consequence, we have

e(H) = ∣H∣− 1 This is because H is a tree, so by definition. (17)

= ∣G∣− 1 We remove edges, but not vertices (18)

= e(G) By assumption. (19)

Since H and G has the same number of vertices, so G itself must be
a tree too.

Proof. 1) Ô⇒ 3)
Assume that G is a tree. We know by definition of a tree that G is con-
nected. We now want to show that it is minimally connected. Suppose
that e = xy ∈ E(G), we want to show that G − e is connected. If not,
note that in G − e there would be a path P connecting x to y, but then
P ∪ xy ∈ G, which is a cycle. Contradiction!

Proof. 3) Ô⇒ 1)
Assume that G is minimally connected. Hence, by assumption we
know G is connected. It remains to show that G is acyclic. If c ∈ G is
a cycle, the removing the edge of c keeps G connected, but this is a
contradiction since we assumed removing any edge would remove the
graph!
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Proof. 1) Ô⇒ 4)
Suppose that G is a graph, it remains to show that G is maximally
acyclic. Suppose e = xy where x, y ∈ V(G) and xy /∈ E(G). Now we
show that G + e contains a cycle. Indeed, if P is a path from x to y in G
then P + e is a cycle in G + e.

Proof. 4) Ô⇒ 1)
Assume that G is maximally acyclic, it remains to show that G is con-
nected. Assume for contradiction that G is not connected. Let x, y ∈ V
be in different components. G + xy has no cycle because if c ∈ G were
a cycle it would use xy and then c − xy connects xy in G. This is a
contradiction since x, y are in different components.
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3 Hamiltonian Cycles and Eulerian Walks

3.1 Hamiltonian Cycles

A Hamiltonian graph is a graph with a spanning cycle, also called
a Hamiltonian cycle, e.g. if C is a subgraph of G, then V(C) =
V(G).

Figure 10. This graph does not contain
a Hamiltonian cycle, as the middle node
is repeated, and cycles by definition do
not contain repeated vertices!

Figure 11. This contains multiple Hamil-
tonian cycles, note that you do not need
to use all the edges, but you do need to
use all vertices!

Theorem Bondy-Chvátal:
If G is a connected graph, e = xy /∈ E(G) and suppose dx + dy ≥
n = ∣G∣, then G has a Hamiltonian cycle if and only if G + e has a
Hamiltonian cycle.

Corollary: If G is a graph where ∣G∣ ≥ 3 such that ∀x, y ∈ V(G)
with xy /∈ E(G) we have dx + dy ≥ n. Then G has a Hamiltonian
cycle.

Proof. Corollary:
Repeately apply Bondy-Chvátal until you get a complete graph Kn. G
being Hamiltonian ⇐⇒ Kn is Hamiltonian.

Proof. Bondy-Chvátal:
We want to show that G + e has a Hamiltonian cycle Ô⇒ G has a
Hamiltonian cycle (the other direction is trivial).

Case 1: If c ⊆ G + e does not use e, then c ⊆ G.

Case 2: List the vertices of c as 1, 2, . . . , n such that the edges are
12, 23, . . . , (n − 1)n and e = 1n.

1 2 3 4 5 n

Now, look for a situation where the first vertex connects to k+ 1 and
the last to k, formally we want to show

∃1 ≤ k ≤ n − 1 s.t. k + 1 ∈ N(1)∧ k ∈ N(n) (20)

Visually, it looks like
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1 2 3 k k+1 n

Denote N(1) = A and N(n) = B, we want k ∈ B, k+1 ∈ A. Also denote
A−1 = {m ∶ m + 1 ∈ A}. We want a specific case when A−1 ∩ B = ∅. Let
∣A∣ = d1 and ∣B∣ = d2, and A ⊆ {2, . . . , n}, B ⊆ {1, . . . , n − 1}, A−1 ⊆
{1, . . . , n − 1}, so both B and A−1 are subsets of the set containing n − 1
elements, and hence ∣B∣+ ∣A−1∣ ≥ n, so by the pigeonhole principle, we
find the k.

3.2 Eulerian Circuit

A circuit in a graph is a sequence of vertices v1v2 . . . vk possibly
with repeats s.t. vivv+1 is a distinct edge for all i and vk = v1 (cycles
that allows repeat vertices, but not repeat edges).

Eulerian Circuit is a circuit using all edges of G.

A trail does not require vk = v1, it is a walk with no repeated
edges. An Eulerian Trail is a trail uses all edges but does not
require vk = v1. We say a graph G is Eulerian if G is an Eulerian
Circuit.

G is Eulerian ⇐⇒ All vertices have even degree and G is con-
nected.

Proof. ⇐Ô
We proof by induction on the number of edges. Assume that all ver-
tices have an even degree and G is connected. Then, we know there
must be a circuit c, and with a circuit there must be a cycle too. If it
did not have a cycle it would’ve been a tree since there exist leaf nodes
with degree 1.

Now, consider the graph G − e(c) (G without the edges of c). We
would obtain

H = H1 ∐ ⋅ ⋅ ⋅ ∐Hk (21)

If we can find a Eulerian circuit in each of H1 . . . Hk, we can combine
each using the original circuit, because we can follow c and when
we enter Hi for the first time, augment c with Hi’s Eulerian circuit.
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We now want to show each Hi has all vertices of even degree, this is
equivalent of showing H1 ∐H2 ∐ ⋅ ⋅ ⋅ ∐Hk has all vertices even degree.

dx,H = dx,G
±

even by hypothesis

− dx,c
°

even by lec 1

(22)

Thus, dx,H is even too.

Eulerian Trail
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⇐⇒ At most 2 connected vertices have odd degree

⇐⇒ Exactly 0 or 2 vertices have odd degree and is connected
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

.

Proof. I dont understand this proof yet, visit OH! A ⇐Ô B
Assume Exactly 0 or 2 vertices have odd degree and is connected.

0 vertices with odd degree:
Then we trivially have an Eulerian circuit, which is also an Eulerian
trail.

2 verticies x, y ∈ V(G) with odd degree:
If xy /∈ E(G), consider G+ e where e = xy, we can get an Eulerian Circuit
then remove e.

If xy ∈ E(G), G − xy has all vertices of even degree. If G − xy has 2

connected components C1, C2, we can get an Eulerian trail as

X X Y Y
C1 C2

Other case, if G − xy is connected

X X Y
C
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4 Matchings

4.1 Bipartite Graphs

A bipartition of a graph G is a partition V = X ∐Y such that X
and Y are independent subsets of G. We say G is bipartite if there
exists a bipartition. 1

3

5

2

4

6

Figure 12. We see that there exists a bi-
partition for this graph as coloured.

We can tell if a graph is bipartite by identifying whether there are
any odd cycles. If there are, then it means some edge will have the
same colouring! Usually this is done by an ’algorithm’ where we
choose some vertex, and we place it in one of the two colours, which
it will constraint its neighbours colours. Repeat until it terminates
successfully or fails.

1

2

34

5

Figure 13. Notice that the vertices 1 and
5 have the same colour! It is impossible
to colour this graph such that all adja-
cent vertices have different colours as it
has an odd cycle.

We define Km,n to be a bipartite graph with m vertices in X and n
vertices in Y where X, Y are bipartitions. Note that Km,n ≅ Kn,m. Every
bipartite graph is a subset of these graphs, so how many possible edges
are there? At most, there will be m × n edges, since we maximize m, n
by doing a near perfect split. (E.g. we have 13 vertices, the near perfect
split is 6× 7 = 42 edges.)

A proper bicolouring of G is an assignment of b=blue or r=red to
every vertex of G such that bb, rr /∈ E(G).

G biparitie ⇐⇒ G has a bicolouring.
biparition ⇐⇒ proper bicoloruing.

The following are equivalent:

1. G is bipartite.
2. Every cycle has even length.
3. Ever circuit has even length.

Proof. 1 Ô⇒ 2:
Assume that G is bipartite. If G had an odd cycle, then the odd cycle
is not properly bicolourable.

Proof. 1 Ô⇒ 3:
Assume that G is bipartite. In a circuit, every 2nd vertex has a dif-
ferent colour, and cannot be odd for parity reasons (we assumed G is
bipartite, so then every circuit has even length.
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Proof. 3 Ô⇒ 2: Cycles are just special cases of circuits.

Proof. 2 Ô⇒ 3. Assume that every cylce has even length. For the sake
of contradiction, assume that every circuit has odd length. Consider
the smallest such odd circuit (m edges), since it is odd it cannot be a
cycle, otherwise it would violate 2. Thus, there must be a repeated
vertex (otherwise it would be a cycle, and it would not be odd length).
Consider the circuit below, where X0 = Xk = v

X0 X1 Xi Xj Xk

Assume the circuit between Xi and Xj is the smallest odd circuit, but
it can’t be odd length by assumption (we assumed the smallest odd
circuit length m. So it has even length, but removing this subcircuit
would have a smaller odd circuit. Contradiction!

Proof. 3 Ô⇒ 1
Assume that every circuit has even length. We solve this one connected
component at a time. Let H be one of these components and pick a
vertex v inside this component. Pick w ∈ V(H) and colour each vw
with b if every walk v → w has an even number of edges, r if there
is an odd number of edges. I dont understand this proof yet, visit
OH!

Theorem: The bipartite handshaking lemma
If G is a bipartite graph then we have

e(G) ∶= ∑
x∈X

dx = ∑
y∈Y

dy (23)

Proof. Lets show WLOG that e(G) = ∑x∈X dx, note that each edge
touches exactly one vertex in X, so split edges by which vertex in X
they touch number touch x ∈ X is dx.

4.2 Matching Theory

A vertex cover C ⊆ V is a subset of vertices such that each edge
touches at least one element of C. Note that a vertex cover does
not need to be minimal.

A

B

C D

E

Figure 14. The vertices A, C, E is the
minimal vertex cover, however, the ver-
tices A, B, C, D, E is also a vertex cover,
just not minimal.

We define the size of the minimum vertex cover as cov(G), where
cov(G) ≤ ∣C∣,∀C being a vertex cover. In the textbook, they use
β(G) to denote this.
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The complement of a vertex cover is an independent set; vice-
versa.

Proof. First, suppose that C ⊆ V is a vertex cover. We want to show
V/C is independent. If e is an edge in V/C then / because e doesn’t
touch C.

Now, let I ⊆ V be independent, we want to show V/I is a vertex
cover. Indeed, if e is an edge of G, e cannot connect two vertices of
I, since I is independent, so e touches at least one vertex from V/I.
Therefore, V/I is a vertex cover.

The size of the largest independent set in G is defined as α(G).

Theorem: cov(G)+ α(G) = ∣G∣

Proof. If C is the minimal vertex cover, then V/C must be the largest
independent set. Consequently ∣G∣ = ∣C∣+ ∣V/C∣ = cov(G)+ α(G).

A matching M ⊆ E is a subset of edges such that no edges share a
vertex. Note that 2∣M∣ ≤ ∣V∣.

A

B

C D

E

Figure 15. In red, a matching, in fact,
this is the maximal matching. We could
also have ∅ ⊆ E be a matching, but you
cannot have a matching that is larger
than 2 for this graph.

match(G) ∶= size of the maximum matching, in the textbook, they
use α′(G) to denote this.

Theorem
match(G) ≤ cov(G)

Proof. We will show for C vertex cover, M matching, that ∣M∣ ≤ C. We
find f ∶ M → C, which is injective f (e1) ≠ f (e2) if e1 ≠ e2. To do this, for
each edge e in M, let f (e) be one of the two vertices which happens
to lie in C. Because M is a matching, we cannot have f (e1) = f (e2) for
distinct edges in the matching because then this would be a common
vertex of e1 and e2 which contradicts that M is a matching. 3 3 Note to self, this proof wants to show

the number of edges in M is at most the
number of vertices in C, so we defined
a function f that maps each edge in M
to a vertex in C that it touches, because
each edge in M has two endpoints, and
at least one of these endpoints must lie
in C as C is a vertex cover. Since M is a
matching, meaning no two edges share a
vertex, this function f has to be injective,
meaning that different edges in M are
mapped to different vertices in C.

Edge covering is a subset F ⊆ E such that every vertex is contained
in at least one edge of F. We have that 2∣F∣ ≥ ∣G∣.

Ecov(G) is the minimum size of the edge covering. Requires G to
have no isolated vertices. In the textbook, they use β′(G) to denote
this.
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Theorem
If G has no isolated vertices, then match(G)+Ecov(G) = ∣G∣

Proof. We first show that match(G) + Ecov(G) ≤ ∣G∣ ⇐⇒ Ecov(G) ≤
∣G∣ −match(G). So we want to show ∃ some edge covering F such that
∣F∣ ≤ ∣G∣ −match(G) implies Ecov(G) ≤ ∣F∣ ≤ ∣G∣ −match(G). Let M be
the max matching. We want to show that there exists an edge covering
F such that ∣F∣ ≤ ∣G∣− ∣M∣. Take

F = M ∪ {one edge touch each vertex not in the matching (repeats okay)}
(24)

where M accounts for 2∣M∣ vertices in the graph, remaining edges in
F has ∣F∣ ≤ G − 2∣M∣, so we get

∣F∣ ≤ ∣M∣+ ∣G∣− 2∣M∣ (25)

≤ ∣G∣− ∣M∣ (26)

Now, we want to prove that match(G) + Ecov(G) ≥ ∣G∣. We want to
show there exists a matching M such that ∣M∣ ≥ ∣G∣ − ∣Ecov(G)∣. Let
F be an edge cover such that ∣F∣ = Ecov(G). We want to show there
exists a matching with ∣M∣ ≥ ∣G∣− ∣F∣. Take the subgraph H ⊆ G whose
edges are F. We can start with an empty graph, and add one edge at
a time, we end up with H, each time we add an edge the number of
connected components can go down by at most 1. Thus, the number
of connected components of H ≥ ∣G∣ − ∣F∣. Note that every connected
component of H has at least one edge, otherwise it would be a single
vertex, which contradicts the definition of an edge cover. Hence, we
take M as one edge from each connected component.

Theorem
For all graphs G, match(G) ≤ cov(G).

König’s Theorem
For a biparitite graph G, match(G) = cov(G).

Proof. Suffices to find a single match M and vertex cover C such that
∣M∣ = ∣C∣. Take our bipartite graph, draw an arrow going down if the
edge is in our matching, upwards if not. We ask, can we reach an
unmatched vertex in Y from an unmatched vertex in X? If yes, we
take a directed path which does this and flip alle dges from being
in/out of matches,new matching M′ is still a matching, with ∣M′∣ =
∣M∣+ 1.
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x1

x2

y1

y2

Initial Matching (1 edge)

x1

x2

y1

y2

Inverted Matching (2 edges)

M will be the desired matching. Say that an edge of the matching
is explorable if we can cross it eventually starting with unmatched
vertex in X. Say that an edge of the matching is explorable if we can
cross it eventually starting with unmatched vertex in X. C = tails of
all explorable edges + tips of non-explorable. We want to show C is a
vertex cover. Take edge e ∈ E, want to show e touches C. If e ∈ M, then
by construction it is in C as we take every tip or tail of an edge that is
in the matching. If e /∈ M, we ask can I get to this vertex y ∈ Y from an
unmatched vertex x ∈ X?.

x y

Consider the case if the answer is YES. Then y is in edge of matching
that our unmatched vertex x has an edge with, and so it is covered. In
this case, we have something as illustrated below, where yz ∈ M, so yz
is explorable, so y ∈ C.

x

y

z

Consider the case if the answer is NO. Then x our unmatched vertex
that we start from, is also not reachable from an unmatched vertex X,
so there is an edge wx ∈ M.

w

x

y

Thus, x ∈ C.
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G is a biparitite graph with bipartition X ⊔Y, an X-perfect match-
ing is a matching that touches all vertices in X. In X-perfect
matching, if A ⊆ X, then ∣Γ(A)∣ ≥ ∣A∣.

Halls Theorem
If ∀A ⊆ X, ∣Γ(A)∣ ≥ ∣A∣ then ∃ X-perfect matching.

Halls Marriage Theorem
A graph with bipartition X ⊔Y has an X-perfect matching if and
only if ∀A ⊆ X we have ∣Γ(A)∣ ≥ ∣A∣.

Proof. Ô⇒ : Trivial because X-perfect matching guarantees Γ(A) ≥
∣A∣,∀A ⊆ X because Γ(A) contains the part of opposite endpoints of
the matching which touches A.

⇐Ô : We now want to show ∃matching M where ∣M∣ = ∣X∣, equiva-
lently, match(G) = ∣X∣. By Königs theorem, this is equivalent to show-
ing cov(G) = ∣X∣. If we took C = X, this would be a vertex cover,
therefore cov(G) ≤ ∣X∣. It remains to show ∣C∣ ≥ ∣X∣.

∣C∣ = ∣C ∩X∣+ ∣C ∩Y∣ (27)

≥ ∣C ∩X∣+ ∣Γ(X/C)∣ (28)

≥ ∣C ∩X∣+ ∣X/C∣ (29)

= X (30)

where we used the hypothesis that X/C ⊆ X, so ∣Γ(X/C)∣ ≥ ∣X/C∣.

We say a matching M is X-perfect of defect d if ∣M∣ = ∣X∣− d.

Defect Hall’s Marriage Theorem: A defect d X-perfect matching
exists if and only if ∀A ⊆ X, ∣Γ(A)∣ ≥ ∣A∣− d.

Proof. Ô⇒ : For a bipartite graph we add d new vertices to Y. Fully
connect X with the added vertices and call this graph G′. Then,

∣ΓG′(A)∣ = ∣ΓG(A)∪ {d}∣ (31)

≥ ∣A∣− d + d (32)

≥ ∣A∣ (33)

Now apply Hall’s theorem in G′ and an X-perfect matching would
involved the extra vertices. Deleting those extra vertices defect the
matching by at most d.
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⇐Ô : Given finite sets S1, . . . , Sk, a transversal is a choice of ele-
ments xi ∈ Si,∀1 ≤ i ≤ k such that all xi are distinct. For example:

{1, 2, 5},{3, 4},{4, 5},{5}

Then, there exists a transversal if and only if ∀A ⊆ {1, . . . , k}, ⋃i∈A Si ≥
∣A∣. We construct bipartite graph, X = {Si}, Y = {e ∈ Si}. Neigbourbood
size is the size of the union.
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5 Max Flow Min Cut

A directed graph is G = (V,
Ð→
E ) where

Ð→
E ⊆ V ×V is the ordered

pairs with (v, v) /∈
Ð→
E and (v, w) ∈

Ð→
E Ô⇒ wv /∈

Ð→
E .

A flow network is a directed graph G together with distinct ver-
tices s, t ∈ G such that Ð→vs /∈

Ð→
E ,
Ð→
tw /∈

Ð→
E ,∀v, w ∈ V.

A capacity on a flow network is a function c ∶
Ð→
E → R≥0.

A flow within a flow network is an assignment f ∶
Ð→
E → R≥0 subject

to the following two constraints:

1. ∀
Ð→
E ∈
Ð→
E , f (Ð→e ) ≤ c(Ð→e ).

2. ∀v ∈ V/{s, t} we have flowin(v) = flowout(v) where flowin(v) =
∑Ð→xv∈

Ð→
E

f (Ð→xv).

Theorem
flowout(s) = flowin(t)

Proof. ∀v ∈ V/{s, t}, we have flowin(v)−flowout(v) = 0.

∑
v∈V/{s,t}

flowin(v)−flowout(v) = 0 (34)

In equation 34, if Ð→e = Ð→xy, we see f (Ð→e )− f (Ð→e ) = 0. If x = s, y ∈ V/{s, t},
we see only a f (Ð→e ). If x ∈ V/{s, t}, y = t we see − f (e). If x = s, y = t we
see 0. Therefore, equation 34 is equivalent to

0 = ∑
Ð→sy∈
Ð→
E

f (Ð→sy)− ∑
Ð→
xt∈
Ð→
E

f (Ð→xt) (35)

= flowout(s)−flowin(t) (36)

A cut is a collection of vertices containing s but not t. The value
of a cut is defined as

val(W) = ∑
Ð→xy∈
Ð→
E

x∈W,y/∈W

c(Ð→xy) = capout(w) (37)
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Theorem
val(flow) ≤ val(cut)

Proof. If we add the conservation equations for all v ∈W/{s} then we
get

val(flow) = flowout(w)−flowin(w) (38)

≤ capout(w)− 0 (39)

= val(cut) (40)

Theorem: Maximum Flow = Minimum Cut, use Ford-Fulkerson
to find Maximum Flow, and then you can find a minimum cut and
see values are the same. Proofs done in CSC373H1.

Consider a bipartite graph that has a sink t connected to all Y and
a source s connected. We need a capacity so let us assign 1 to all the
edges.

s t

1

2

3

4

5

6

A

B

C

D

E

F

Not exactly identical to the one drawn in lecture!

What can we say about max flow / min cut? We notice that in
attempting to create a max flow, we create a matching. This implies
that a maximum flow and a maximum matching are equivalent. In the
lecture, we defined

L = {1, 2, 3} Y′ = {4, 5, 6} K = {A, B, C} X′ = {D, E, F}
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And so, the value of the cut is

val(c) = ∣L∣+ (# of edges K → Y/L)+ ∣X/K∣ (41)

For König, want to produce vertex cover where size is ≤ size of match-
ing max flow min cut says max matching is

∣L∣+ ∣X/K∣+ (# of edges → Y/L) (42)

for some cut {s}∪K ∪ L.

Suppose we change the capacities to say,∞ for edges between X, Y.
Then it does not matter given that there is a contstraint given that each
edge with ∞ capacity is flowed both into and out of with capacity 1.
But the value of the cut is

val(c) = ∣L∣+∞× (# of edges K → Y/L)+ ∣X/K∣ (43)

In a minimum cut, there are no edges K → Y/L. The maximum match-
ing is ∣L∣+ ∣X/K∣.
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6 Connectivity

6.1 Vertex Connectivity

Moral Definition
A graph G, the vertex connectivity κ(G) is the number of vertices
needed to disconnect the graph. Unless G = Kn and then κ(Kn) =
n − 1.

Alternate Definition
κ(G) is the smallest size of a vertex-separator S ⊆ V such that G − S
is either a single point or disconnected.

κ(G) ≤ δ(G) where δ(G) is the minimum degree of any vertex in
G.

Proof. Let v have the smallest degree d. Take S = γ(v). We want to
show S is a vertex separator. Consider G − S, v is not connected to any
vertex in G − S.

• Case 1: G − S contains more vertices than v because v is not linked
to the rest of the graph.

• Case 2: G − S is a single vertex v.

In either case, S is indeed a vertex separator.

A graph is k-connected if κ(G) ≥ K.

• 0-connected: All graphs except ∅

• 1-connected: All connected graphs except K1.

• 2-connected: Graphs with no cut vertex.

Remark: G is k-connected ⇐⇒ ∣G∣ ≥ K + 1 and no set S ⊆ V with
∣S∣ ≤ k − 1 disconnects G.

Warning

A

BC

D

E F

G

Removing vertex G increases vertex connectivity, this graph has κ(G) = 1
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A

BC

D

E F

This graph, despite having fewer vertices, has κ(G) = 2

Let e be an edge of G. We have

κ(G)− 1
∗
≤ k(G − e)

∗∗
≤ κ(G) (44)

Proof. Start with ∗∗. Consider a minimal vertex-separator S for G. If
we can show , S is a vertex separator for G− e then κ(G− e) ≤ ∣S∣ = κ(G).
We now want to show G − e − S is disconnected or a single point.

• G − S is a single point, then G − e − S is a single point also.

• G − S is disconnected, then if e is incident to G − e − S = G − S. Then
we are done. Otherwise, if e is not then G − e − S = (G − s) − e,
disconnected because G − s is.

Now we show ∗. Suppose S is a vertex separator for G − e, want to
show there exists a vertex separator for G with at most ∣S∣+ 1 vertices.

• G− e−S single point then G−S is a single point and G− e is a single
point, so S is a vertex-separator for G.

• (G − e) − S is disconnected, then if G − S is disconnected as well
we are done. In the case G − S is connected, consider G − S as two
connected components H1, H2 connected by edge e. If H1 has at least
two vertices, then G − S − x is disconnected for x ∈ H1, so S ∪ {x}.
If ∣H2∣ ≥ 2 then G − S − y disconnected for y ∈ H2, so S ∪ {y}. If
G − S = xy, then G − S − x is a single vertex, so S ∪ {x}.

G connected, s, t distinct vertices in G and st /∈ E(G), we define a s, t
vertex-separator S ⊆ V/{s, t} such that in G − S, s, t are not linked. The
minimum size of s, t vertex separator is ≥ largerst number of vertex
disjoint paths (excluding s, t) s to t.

Vertex Mengers Theorem:
The minimum size of s, t vertex-separator is equal to the largest
number of vertex disjoint paths s to t.

Proof. I did not understand this... not testable though!
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Vertex Menger’s Corollary
G is k-connected ⇐⇒ for every 2 distinct vertices s, t there are at
least k-vertex (excluding s, t) disjoint paths from s to t.

Proof. Ô⇒ . Assume that the graph G is k-connected. Being k-
connected means ∣G∣ ≥ k + 1 and no subset S ⊆ G with ∣S∣ ≤ k − 1 has
G − S disconnected.

Case 1: st /∈ E(G) then every s, t vertex-separator is of size greater
than k.

Case 2: Consider st ∈ E(G) Consider G− e. κ(G− e) ≥ κ(G)−1 ≥ k−1.
If we apply Vertex Menger’s once more, we get that in G − e we have
k − 1 vertex disjoint paths. Together with e, this is k many paths.

⇐Ô First show ∣G∣ ≥ k + 1. Take s ≠ t in G and consider the k-paths.
Each path contributes at least one new vertex to G (other than a direct
s − t path). ∣G∣ ≥ 2 + (k − 1) = k + 1. Now we want to show if S ⊆ V
with ∣S∣ ≤ k− 1 then G − S is connected. Suppose otherwise, i.e. G − S is
disconnected. Let s, t be in 2 different connected components of G − S.
Then, S is a s, t vertex separator, which can happen since there are k
vertex disjoint paths s → t.

6.2 Edge Connectivity

G a graph, the edge-connectivity λ(G) is the smallest number of
edges needed to be removed so that G becomes disconnected (or
a single vertex).

A bridge is an edge in a connected graph whose removal discon-
nects the graph.

For example, when λ(G) = 0, then it is already disconnected, an
example of λ(G) = 1 is for example, a bowtie. We want to relate
number of edges needed to be cut to separate s and t to the number
of edge-disjoint paths s → t like with vertex connectivity. Consider
the bowtie, there is a single vertex-disjoint paths. However, there are
actually two edge disjoint paths.

The line graph L(G) of G is the graph whose vertices are the
edges of G, with e f ∈ E(L(G)) when e = uv and f = vw in G.
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Edge Menger’s Theorem
If x and y are distinct vertices of a graph G, then the minimum
size of an x, y-disconnecting set of edges equals to the maximum
number of pairwise edge-disjoint x, y-paths.

G is k-edge connected if λ(G) ≥ k.

Edge Menger’s Corollary
G is k-edge connected if and only if every pair of vertices s, t is
connected via k edge disjoint paths.
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7 Planar Graphs and Coloring

The question to ask is can I color the map with 4 colors such that no two
regions sharing an edge uses the same color.

A (proper) r-coloring of a graph G is an assignment X ∶ V →
{1, . . . , r} so that if vw is an edge then χ(v) ≠ χ(w).

A planer graph is a graph G that can be using polygonal (zig-zag)
edges, so that no two edges cross or touch.

A plane graph is a planar graph + its drawing.

The easiest way to show planar could draw a plane graph.

The face of a plane graph denoted as F is a connected component of
R2 −G (i.e. remove all edges + vertices)

x, y ∈ R2 −G are linked by a polygonal arc if we can draw zig-zag
avoiding G.

The closure is F is defined as F = F + limit points in G.

F1

F2F3
F4

The above graph has 4 faces, three bounded inner faces and one unbounded
outer face.

The boundary of a face F, denoted as ∂F, is the set of edges and
vertices that enclose F. It forms a closed walk along the edges of
the plane graph G.

Theorem
Every plane drawing of a forest has 1 face.

Proof. We proof by induction on the number of edges.
Base Case: If there are 0 edges then it is trivial, it consists only of
isolated vertices. A plane drawing of such a forest has exactly one
face, the entire unbounded region of the plane.
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Step Case: Assume that any plane drawing of a forest with k edges
has exactly one edge. Take a plane drawing forest F1 with k + 1 edges
and take a leaf edge exy with y having degree 1. By induction, F − e
has 1 face. Now add the edge back in. Basically say we can have an
algorithm to eliminate crossings and so we would not have a zigzag,
can take facts like these for granted in this course.

Corollary
I dont quite understand this proof and I think the corollary is
problematic, visit office hours. If G is not a forest, then every face
boundary contains a cyle.

Proof. Take a face F. If ∂F does not contain a cycle then it is a forest
H ⊆ G. Every two points in F are polygonal path in H, but also even
two points in R2 −H are connected by path so R2 −H = F so G = H.

Theorem
Every drawing of a cycle has an "inside" and "outside" (the draw-
ing has two faces).

Proof. Choose a random direction not parallel to any edge. For any
p ∈ R2 −C consider a ray p +R≥0.

TODO: FINISH THE NOTES ON THIS SECTION!!!

7.1 Colouring

A proper r-colouring of a graph G is a function C ∶ V → {1, . . . , r}
such that C(x) ≠ C(y) when xy ∈ E.

The chromatic number of a graph G, χ(G) is the smallest r such
that G has a proper r-colouring.

A k-partite graph G is a graph such that we can partitoin V =
V1 ⊔ ⋅ ⋅ ⋅ ⊔Vk such that G[Vi] has no edges. Vi could be empty.

Theorem: χ(G) ≤ k ⇐⇒ G is k-partite.

ω(G) is the largest r such that Kr ⊆ G, aka the clique number,
which is the maximum size of a clique.
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χ(G) ≥ ω(G)

χ(G) ≤ ∆ + 1 where ∆ =maxv∈V dv.

Proof. Colour the vertices of G one at a time, using one of ∆+1 colours.
You never get stuck because if v is the current uncoloured vertex, then
its neighbours have been coloured with at most ∣Γ(v)∣ many colours,
which is less than ∆(G)+ 1 (the number of colours available).

A graph G is k-degenerate if we can list the vertices v1, . . . , vn such
that vi has degree dvi ≤ k in G/{v1, . . . , vi−1}.

If a graph G is k-degenerate then χ(G) ≤ k + 1

Proof. Greedy algorithm in the order vn, . . . , vi. There are only k edges
going forward, so worst case we use k + 1 colours.

The 6-colour theorem states, every plane or graph has chromatic
number χ(G) ≤ 6.

G is planar Ô⇒ G is 5-degenerate.

We first prove a claim that any planar graph has vertex of degree ≤ 5.

Proof. Choose any connected component of G. If every vertex has
degree ≥ 6, then then number of edges ≥ 1

2 6∣H∣ ≥ 3∣H∣ > 3∣H∣− 6 (planar
graphs H cannot have more than 3∣H∣− 6 edges.

Proof. G − v1 is planar means v2 is a vertex of degree less than 5 in
G − v1. G − v1 − v2 is planar means v3 is a vertex of degree less than 5
in G − v1 − v2.

5-colour theorem
Every planar graph has χ(G) ≤ 5.

Proof. We prove by induction on G.
Base Case: Empty graph, trivial.
Step Case: Choose a vertex v such that dv ≤ 5 (since it is a planar
graph, we know such exists), colour G− v with 5 colours (by induction
we can do this). Consider the following subcases:

• If dv ≤ 4 and v was the only vertex not coloured, we have 5 colours,
and pick the available colour.
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• If dv = 5 and there is a repeated colour in Γ(v), then there is a colour
available.

• If dv = 5 but all its neighbors are coloured with 5 different colours,
we are going to recolour G using kempe-chains4, such that there is a 4 If we can swap the colours of a

kempe chain, the graph remains prop-
erly coloured

duplicate colour around v1. Denote the colours as C1, C2, C3, C4, C5,
and consider the C3-C1 kempe chain containing v1. If it does not
contain v3 (v3 having C3) we can invert its colour. Swap colours and
colour v with C1. 5. 5 Invert the colour of the kempe chain,

and so C1 becomes ’free’ and we can
colour v with C1, and since the kempe
chain does not contain v3, we free up a
colour surrounding v

– If however, the C3-C1 kempe chain seperates v2 from v4 and v5,
consider the C2-C4 kempe chain containing v2. It does not contain
v4 as the previous kempe-chain seperates v4 and v2 so recolour
v.

A proper edge colouring of G is an assignment of colours to
edges such that two edges sharing the same vertex have different
colours. Colour classes are matching. χ′(G) is the smallest num-
ber of colours for edge colouring called edge chromatic number.

Theorem (Vizing)
∆ ≤ χ(c(G)) ≤ ∆ + 1

Proof. TODO: FILL IN PROOF
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8 Chromatic Polynomial

PG(r) is the number of proper r-colourings of G.

For example,

• PKn
(r) = rn

• PKn(r) = r(r − 1) . . . (r − n − 1) = r!
(r−n)!

• PPn(r) = r(r − 1)n−1

Theorem
PG(r) is a polynomial for all graph G

For e = xy ∈ E(G), G/e is the contraction (collapses the edge, the
two vertices connected by e become the same vertex).

Theorem
PG(r) = PG/e(r)− PG/e(r)

Proof. PG/e(r) counts the number of r-colorings of G which are proper
except possibly on this one edge. PG/e(r) = PG(r)+ the number of r-
colourings of G which are proper to at all edges other than e = xy and
which give x, y the same colour. Now note that there is a proper bi-
jection between proper r-colourings and ... sorry I did not understand
the last part of this proof.

Alternative: PG/e(r) − PG(r) = colourings of G proper everywhere
except e = xy so C(x) = C(y).

Corollary
PG(r) is a polynomial in r, valid ∀r ≥ 0 (PG(0) = 0 if G = ∅, 1 if
G = ∅.

Proof. We can prove by induction by inducting on the number of edges
e(G), simple as base case is just PKm

(r) = rm, and we assume true for
all smaller graphs (strong induction), so PG(r) = PG/e(r)− PG/e(r) also
holds since we can apply I.H. on PG/e(r)− PG/e(r).

Theorem
PG(r) = r∣G∣+ lower order terms. Lower order terms like rm, m < ∣G∣
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Proof. We induct on the number of edges e(G), the base cases is easy
as

PKm
(r) = rm (45)

I.H. assumes theorem holds for all smaller graphs, so we have

PG = PG/e
±

r∣G/e∣+ lower order

− PG/e
±

r∣G/e∣+ lower order

= r∣G∣ + lower order terms (46)

we applied the I.H. since ∣G/e∣ and ∣G/e∣ are less than ∣G∣.

Remark
If ∣G∣ = n, then

PKn(r) ≤ PG(r) ≤ PKn
(r) (47)

An acyclic orientation of a graph G is a choice of direction for
each edge so that no directed cycles occur.

We define AG as the number of acyclic orientations of G.

Theorem

AG = (−1)∣G∣PG(−1) (48)

For instance, consider a triangle. We get eight total orientations,
but two of them are cycles, so we have six good ones. Then, PC3(r) =
r(r − 1)(r − 2) and hence we get 6 if we substitute r = −1.

Look at acyclic orientations of G/e, G, G/e, e = xy, split them up
according to there is a path x → y, y → x, or neither.

AG/e AG AG/e

x → y 1 1 0
y → x 1 1 0

Neither 1 2 1
TODO, draw the example graph for the table.

Proof.
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9 Ramsey Number

We define the Ramsey Number R(a, b) to be the smallest number
n so that every red-blue edge-Coloured Kn contains either a red
Ka or a blue Kb.

We define R(a) to be R(a, a), where is the smallest n such that a
red-blue edge-colored Kn contains a monochromatic Kn

Theorem The Ramsey number exists for all a, b and R(a, b) ≤ 2a+b

Proof. Induct on a + b.

Base Case: a + b = 2, such that a = 1, b = 1. R(1, 1) = R(1) = 2 ≤ 2a+b.
Since having K2 will make sure that either blue or red K1 appears.

Inductive Step: Assume statement holds for a + b ≤ k. Then for
a + b = k, to show that R(a, b) exists, we need to show the claim

Claim:
R(a, b) ≤ R(a − 1, b)+ R(a, b − 1)

To show the claim, let n = R(a−1, b)+R(a, b−1), then every red-blue
edge-colored Kn will should contains a red Ka or a blue Kb.

Pick an arbitrary vertex v ∈ V(Kn), let G′ = Kn ∖ {v} = R ⊔ B to be
the partition of the neighbours of v according to whether the edge
connecting to v is red or blue, for example R will be the set of vertices
such that it connected v as red in Kn.

Note that it must be the case that either ∣R∣ ≥ R(a − 1, b) or ∣B∣ ≥
R(a, b − 1). Prove by contradiction, assume both fails, we will have

∣R∣+ ∣B∣ ≤ R(a − 1, b)− 1+ R(a, b − 1)− 1

= n − 2

< n − 1

This contradict to the fact that ∣V(R ⊔ B)∣ = ∣V(G′)∣ = n − 1.

If ∣R∣ ≥ R(a−1, b), then R will either contains a red Ka−1 or a blue Kb.
If Kb then done. If a red Ka−1, then adding v back to ∣R∣, based on the
construction definition of R. We know that v have red edge connected
to all vertices in R as red where we could have Ka.

The proof for ∣B∣ ≥ R(a, b − 1) will be symmetric. Hence omit here.
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Example Application for Ramsey Theory: Suppose we have a se-
quence x1,⋯, xn of n = R(10) distinct real number. Then there is either
a increasing sequence of length 10 or a decreasing sequence of length
10.

Proof. Consider a graph Kn with vertices {1,⋯, n} given by. For edge
jk where j < k, color the edge as

⎧⎪⎪⎨⎪⎪⎩

Increasing, if xj < xk

Decreasing, if xj > xk

By Ramsey theory, there is either an Increasing K10 or a Decreasing
K10. Where based on the construction, in the sequence, it will be a
Increasing/Decreasing sequence with length 10.

Define R(a1, a2,⋯, ak) to be the smallest n such that if Kn is edge-
colored with colors c1,⋯, ck then there must always be a cicolored
Kai for some i.

R(a1,⋯, ak) exists

Proof. Induct on k.

Base Case: k = 2. Proved in the first theorem.

Inductive Step: Assume this is right for all smaller k. Then let n =
R(a1, R(a2,⋯, ak)), by Ramsey’s theorem, there is either a c1colored Ka1

or a KR(a2,⋯,ak)
where none of the edges are colored as c1.

For the latter case, this means we have a KR(a2,⋯,ak)
edge-colored

with c2,⋯, ck. By induction hypothesis, there is a ci colored Kai for
some 2 ≤ i ≤ k

Let G be the complete graph with infinite vertex set {1, 2,⋯} and
edge set {(i, j)∣i < j} and suppose we have a red-blue edge-coloring
of G. Then G contains a complete infinite monochromatic sub-
graph

Proof. Let v1 = {1}, then we are going to do the following process:

1. Look at all edges from v1 to other vertices {(1, j)∣j ≥ 2}

2. Among these edges, there must be either infinitely many red edges
or infinitely many blue edges. (Based on the Pigeonhole Principle)

3. Name a color c1, to color all these edges where incident to v1
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4. Remove all vertices that are colored as c1

Then we let v2 = the smallest non-deleted vertex. Do the above process
again with v2 and remove all vertices that are colored as c2.

After infinitely steps, you will obtained a sequence v1, v2,⋯ such
that for each vi, its forward neighbours have edges of the same color.

Example about infinite sequence Given an infinite sequence of dis-
tinct numbers x1, x2,⋯ there is an infinite subsequence which is in-
creasing or an infinite subsequence which is decreasing.

Proof. Apply the infinite Ramsay theorem to the coloring on {1, 2,⋯}
where we colors ij with i < j as "increasing" if xi < xj and "decreasing"
with xi > xj

Theorem: For a ≥ 3 we have
√

2
a
< R(a) ≤ 4a

Proof. Since R(a) = R(a, a) ≤ 2a+a = 22a = 4a, Hence we already prove
the upper bound.

Then we just need to show the lower bound. For n =
√

2
a
, we want

to show that there is a red-blue edge-colored Kn with no monochro-
matic Ka.

Select a random coloring. Since each edge is colored red or blue
with equal probability 1

2 . Then the probability that any individual Ka

P(Ka is monochromatic) = 2 ⋅ 1
2

(
a
2)

= 21−(a
2)

Then for n vertices, there are (na) possible Ka.

P(At least one Ka is monochromatic) = (n
a
) ⋅ 21−(a

2)

Then we simplify the bound.

• Approximate (na)

(n
a
) = n!

a!(n − a)!
≈ na

a!

Then plug in the approximation and n =
√

2
a
, note that na = (

√
2

a
)a =

2
a2
2 . Then the probability becomes:

2
a2
2 ⋅ 21−(a

2) = 2
a2

2+1−(
a
2)

a!
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For a2

2 − (
a
2) we can simplify as: a2

2 −
a2

2 −
a
2 =

a
2 .

Hence the probability becomes

2
a
2+1

a!

Since this probability is strictly less than 1, then the probability that
at least one Ka is monochromatic is less than 1, which means there
exists a coloring where no monochromatic Ka exists.

A k−uniform hypergraph G is a finite set V called "vertices" and E
a family of size K subsets of V called "hyperedges".

We define the complete k−uniform hypergraph K(k)n to have vertex
set V with ∣V∣ = n and all possible k−element subsets as edge set.

Note if k = 2, then it is the definition of normal graph.

Example for k = 3 an example of k−uniform hypergraph is with
V = {1, 2, 3, 4, 5} and E = {123, 134, 234, 145, 135, 345}

We say that a k−uniform hypergraph G contains K(k)a if there is a
subset A ⊂ V with ∣A∣ = a such that every k−tuple in A lies in E.

Example In the previous example G contains K(3)4 on vertices {1, 3, 4, 5}
since E contains all 134, 135, 145, 345

There exists a number n = Rk(a, b) which we call the k−uniform
Ramsey number, such that if hte edges of a complete K(k)n are
colored red or blue, then either is contains a red K(k)a or a blue
K(k)b .


	Introduction to Graph Theory
	Trees and Distance
	Hamiltonian Cycles and Eulerian Walks
	Matchings
	Max Flow Min Cut
	Connectivity
	Planar Graphs and Coloring
	Chromatic Polynomial
	Ramsey Number

