
Large Language Models
Paul He

September 2, 2024

large language models ii

Notes are based on LLM course notes and lectures at ETH Zürich (some
parts may be identical in terms of wording). These are simply my notes used
for studying the course. I do not guarantee the correctness of this set of notes,
please feel free to point out if there are typos or mistakes.

large language models iii

Contents

I Theory 1

1 Probabilistic Foundations 1

1.1 Language Modeling 1

1.2 A Measure-theoretic Foundation 2

1.3 Defining a Language Model 3

1.4 Globally Normalized Language Models 4

1.5 Locally Normalized Language Models 5

1.6 Tight Language Models 6

1.7 Defining the probability measure of an LNM 6

2 Classical Language Models (Finite-State Language Models) 12

2.1 Weighted Finite-state Automata 12

2.2 Finite-state Language Models 17

2.3 Normalizing Finite-state Language Models 18

2.4 Tightness of Finite-state Models 21

2.5 The n-gram assumption 21

2.6 Representation-based n-gram Models 22

3 Recurrent Neural Language Models 24

4 Transformers 28

4.1 Formal Definition of Transformers 28

5 Tokenization 35

6 Generation from Language Models 37

II Applications 37

7 Transfer Learning 38

7.1 ELMo 38

7.2 BERT 39

7.3 BERT Variants 41

8 Parameter Efficient Finetuning 43

8.1 Partial Fine-tuning 43

8.2 Adapter Tuning 44

8.3 LoRA (Low Rank Adaptation of Models) 45

9 Prompting and Zero-shot Inference 46

9.1 Prompt Engineering 46

9.2 Advanced Prompting 48

10 Vision Language Models 50

large language models iv

10.1 Components of a Vision Language Model 50

10.2 Vision-Language Models: Pre-training Objectives 51

III Security 53

large language models 1

Part I

Theory

1 Probabilistic Foundations

1.1 Language Modeling

Language Model (Informal)

Given an alphabet Σ (finite, non-empty) and a distinguished end-
of-sequence symbol eos /∈ Σ, a language model is a collection of
conditional probability distributions p(y|y) for y ∈ Σ ∪ {eos},
and y ∈ Σ∗. p(y|y) therefore represents the probability of y
being the next token given the history y.

Most papers have the following autoregressive factorization:

p(y) = p(y1 . . . yT) = p(eos|y)
T

∏
t=1

p(yt|y<t) (1)

where y ∈ Σ∗, yt ∈ Σ and y<t ∈ Σ∗

It is left implicit, whether or not p is indeed a valid probability dis-
tribution, and if it is, over what space. The natural assumption of the
informal definition of Language Model’s given above, is that p is a
distribution over Σ∗. However, it is generally not true that all such
collections of conditionals will yield a valid probability distribution
over Σ∗, as some may "leak" probability mass to infinite sequences.
We additionally have to be very careful when dealing with uncount-
ably infinite spaces lest we run into a classic paradox, which we will
demonstrate below.

Infinite Toin-Coss Example
Consider the infinite, independent fair coin toss model, where we
aim to place a distribution over {H, T}∞. Such distribution corre-
sponds to a "language model", defined as for all y<t, p(H|y<t) =

p(T|y<t) = 1
2 and p(eos|y<t) = 0. However, with each indi-

vidual sequence over {H, T} should also be assigned probability
(1

2)
∞ = 0. Without a formal foundation, we arrive at the following

large language models 2

paradox:

1 = p({H, T}∞) = p(
⋃

ω∈{H, T}∞

{ω})

= ∑
ω∈{H, T}∞

p({ω}) = ∑
ω∈{H, T}∞

0 ?
= 0

There is another example in the course notes, which I will omit here.

1.2 A Measure-theoretic Foundation

Let Ω be the outcome space and F be the set of measurable subsets

Probability Measure

Let P : F → [0, 1] be the probability measure, which is a func-
tion that assigns probability to each measurable subset, where:
1. P(Ω) = 1
2. If ε1, ε2 is a countable sequence of disjoint sets in F , then

P(
⋃

n εn) = ∑n P(εn)

Then, (Ω,F , P) is the probability space

Probability pre-measure

LetA be an Algebra over some set Ω, a probability pre-measure
over (Ω,A) is a function P0 : A → [0, 1] such that
1. P0(Ω) = 1
2. If ε1, ε2, . . . is a countable sequence of disjoint sets in A whose

countable union is also in A, then P0(
⋃∞

n=1 εn) = ∑∞
n=1 P0(εn)

σ-algebra,

Let P(Ω) be the power set of Ω. Then, F ⊆ P(Ω) is a σ-algebra
over Ω iff:
1. Ω ∈ F
2. if ε ∈ F , then εC ∈ F
3. if ε1, ε2 . . . is a finite or infinite sequence in F , then

⋃
n εn ∈ F

If F is a σ-algebra over Ω, we call the tuple Ω,F a measurable
space.

Let Ω be any set. Importantly, there is no one way to construct a
σ-algebra over Ω:

1. The family consisting only the empty set ∅ and the set {∅, Ω} is
called the minimal or trivial.

large language models 3

2. The full power set F def
= P(Ω) is called the discrete σ-algebra.

3. Given A ⊆ Ω, the family F def
= {∅,A, Ω\A, Ω} is the σ-algebra

induced by A.

We can confirm these are indeed σ-algebra by checking them against
the axioms.

Algebra

Let P(Ω) be the power set of Ω. Then, F ⊆ P(Ω) is an algebra
over Ω iff:
1. Ω ∈ F
2. if ε ∈ F , then εC ∈ F
3. if ε1, ε2 ∈ A, then ε1 ∪ ε2 ∈ A
The difference to σ-algebra, is that the definition is weakened
from countable to finite.

Random

A mapping x : Ω → S between two measurable spaces (Ω,F)
and S , T is an (S , T)-valued random variable, or a measurable
mapping if for all B ∈ T ,

x−1(B) def
= {ω ∈ Ω : x(ω) ∈ B} ∈ F (2)

1.3 Defining a Language Model

Language Model

Let Σ be an alphabet. A language model is a discrete distribu-
tion pLM over Σ∗

As an example, we can construct a very simple language model. Let

Σ def
= {a}, for n ∈N≥0, define

pLM
def
= 2−(n+1)

where, a0 = ε and an = a . . . a︸ ︷︷ ︸
n times

. To verify pLM is a language model, we

just check if the probabilities of finite sequences sum to 1:

∑
y∈Σ∗

pLM(y) =
∞

∑
n=0

pLM(an) =
∞

∑
n=0

2−(n+1) =
1
2

∞

∑
n=0

1
2n =

1
2

1
1− 1

2
= 1

For this example, the language of pLM is defined as

L(pLM)
def
=

{(
an, 2−(n+1)

)
|n ∈N≥0

}
(3)

large language models 4

With this, we can define the weighted language.

Weighted Language

Let pLM be a language model, the weighted language of pLM is
defined as

L(pLM)
def
= {(y, pLM(y))|y ∈ Σ∗} (4)

So, a language model is simply a distribution that weights strings (nat-
ural utterances) by their probabilities to occur in a particular language.

1.4 Globally Normalized Language Models

The next two chapters, discusses in depth the computational models
which we can use to try to tractably represent distributions over strings
and ways of approximating (learning) the ground-truth distribution
based on finite datasets using such models.

An energy function is a function p̂ : Σ∗ → R, we now can define a
globally normalized language model in terms of an energy function
over Σ∗

Globally Normalized Model

Let p̂GN(y) : Σ∗ → R, a globally normalized model (GNM) is
defined as

pLM(y) def
=

exp{− p̂GN(y)}
∑y′∈Σ∗ exp{− p̂GN(y′)}

def
=

1
ZG

exp{− p̂GN(y)} (5)

• One only needs to define an (unnormalized) energy function p̂GN,
which scores an entire sequence at once

• They define a probability distribution over strings y ∈ Σ∗ directly

• However, ZG can be expensive to compute!

Since Σ∗ is infinite, ZG might diverge to infinity! In this case, GNM is
not defined. We say an energy function is normalizable if the quantity
ZG is finite. With this, we turn to a theorem

Normalizable energy functions induce language models

Any normalizable energy function pGN induces a language
model, i.e., a distribution over Σ∗.

large language models 5

Proof. Given an energy function p̂GN, we have exp{− p̂GN(y)} ≥ 0 and

∑
y∈Σ∗

pGN(y) = ∑
y∈Σ∗

exp{− p̂GN(y)}
∑y′∈Σ∗ exp{− p̂GN(y′)} (6)

=
1

∑y′∈Σ∗ exp{− p̂GN(y′)} ∑
y∈Σ∗

exp{− p̂GN(y)} (7)

= 1 (8)

Which means, pGN is a valid probability distribution over Σ∗

1.5 Locally Normalized Language Models

Decomposes the problem into the problem of modeling a series of
conditional distributions over the next possible symbol in the string
given the context so far.

First, let’s introduce the concept of prefix probabilities, which de-
notes the sum of the probabilities of all strings beginning with a certain prefix.

Prefix Probability

Let pLM be a language model. We define a pLM’s prefix proba-
bility π as

π(y) def
= ∑

y′∈Σ∗
pLM(yy′) (9)

Any language model can be locally normalized

Let pLM be a language model. Then, there exists a locally nor-
malized language model pLN such that, for all y ∈ Σ∗ with
|y| = T,

pLM(y) = pLN(y) = pSM(eos|y)
T

∏
t=1

pSM(yt|y<t) (10)

Proof. Let y ∈ Σ, y ∈ Σ∗, assume π(y) > 0 and define

pLM(x|y) def
=

π(yx)
π(y)

(11)

pLM(eos|y) def
=

p(y)
π(y)

(12)

large language models 6

The idea is telescoping product

pLM(y) = pLM(eos|y)
T

∏
t=1

pLM(yt|y<t) (13)

=
p(y<t+1)

π(y<t+1)

T

∏
t=1

π(y<t+1)

π(y<t)
(14)

=
p(y<t+1)

�����π(y<t+1)

T

∏
t=1

�����π(y<t+1)

π(y<t)
(15)

= p(y<t+1)π(ε) (16)

= p(y) (17)

1.6 Tight Language Models

Tightness

A locally normalized language model pLN derived from a se-
quence model pSM is called tight if it defines a valid probability
distribution over Σ∗

∑
y∈Σ∗

pLN(y) = ∑
y∈Σ∗

[
pSM(eos|y)

T

∏
t=1

pSM(yt|y<t)
]
= 1 (18)

Note that:

1. Individual conditional distributions pSM(y|y) in a non-tight LNM
are still valid conditional distributions.

2. It is the distribution over all possible strings that they induce, that
might not sum to 1 (invalid).

3. Given a sequence model pSM, pLN is a language model if the LNM’s
conditional probabilities match the conditional probabilities of a
known language model pLM, as any normalizable energy function
induces a language model.

1.7 Defining the probability measure of an LNM

In this section, we want to define language models rigorously. If we
want to answer "What is the probability that a language model gener-
ates a finite string?", we need infinite strings.

large language models 7

Re-definition of a Language Model

A language model is a probability space over Σ∗. Equivalently,
a language model is a sequence model such that P(Σ∞) = 0

Sequence Model

A sequence model is a probability space over the set Σ∗ ∪ Σ∞

The goal for this section is to rigorously construct a probability se-
quence model P(Σ∞) = 0 to encode the probabilities assigned by a
LNM. 1 1 Note to self, for Final Exam revision,

ignore this section, but very relevant for
Assignment 1.Step 1: Defining an Algebra over Σ∞ as the set of all infinite strings

over Σ ∪ {eos}

Step 2: Define algebra over Σ∞ using cylinder sets

Cylinder Set

Given any set H ⊆ Σk, define its cylinder set (of rank k) to be

C(H)
def
=

{
yω|y ∈ H, ω ∈ Σ∞

}
(19)

A cylinder set of rank k is basically the set of infinite strings that share
their k-prefix with some string y ∈ H ⊆ Σk

We also denote the collection of all rank-k cylinder sets by

Ck
def
=

{
C(H)|H ∈ P(Σk

)
}

(20)

and define the following to be the collection of all cylinder sets over
Ω, where Ω = Σ∞

C def
=

∞⋃
k=1

Ck (21)

We arrive at the following conclusion.

C ⊆ P(Ω) is an algebra over Ω = Σ∞

Proof. We just have to check the lemma against the axioms accord-
ing to the definition of an Algebra. Let Ω = Σ∞ and F = C

1. For any k, we have Ω = Σ∞
= C(Σk

) ∈ C = F

2. Given a cylinder set C(H) of rank k, we have C(H)C = C(Σk\H).
Hence C is closed under complements.

large language models 8

3. The union2 of two cylinder sets of ranks k1 ≤ k2 is another cylin- 2 double check, typo in course notes

der set of rank k2

Step 3: Defining a Pre-measure over C

Given an LNM pLN and any set C(H) ∈ C, define the pre-measure
P0 for the cylinder algebra C, let

P0(C(H))
def
= ∑

y∈H
pLN(y) (22)

First, we show that P0 is a well-defined function (an expression
whose definition assigns it a unique interpretation or value.)

Proof. Suppose a cylinder set can be described as two different pre-

fix sets: H1 ⊆ Σk1 and H2 ⊆ Σk2 . In other words, C(H1) = C(H2).3 3 why?

Without loss of generality, assume that k1 ≤ k2. Then, 4 4 Typos in course note, missing overline
in second y of yy

C(H2) = C(H1) (23)

=
⋃

y∈H1

C(y) (24)

=
⋃

y∈H1

⋃
y∈Σk2−k1

C(yy) (25)

All unions above are disjoint, and hence H2 =
⋃

y∈Σk2−k1 {yy|y ∈
H1}. Then, by the locally-normalizing property of pLN, we have
that

P0(C(H1)) = P0(C(H2)) (26)

Now, we can prove the following:

Lemma 2.5.2 (script)

P0 is a pre-measure over C

Lemma 2.5.3 (script)

Let P0 be a finitely additive probability pre-measure over C,
such that, given a decreasing sequence of sets A1 ⊃ A2 . . . in
C where

⋂∞
n−1 An = ∅, limn→∞ P0(An) = 0. Then, P0 is also

countably additive over C.

First, we prove Lemma 2.5.3

Proof. Let {An} be a sequence of disjoint sets in C such that A =⋃
n An ∈ C Then, defining Bn =

⋃
m>n Am we see that B1 ⊃ B2 ⊃ . . .

large language models 9

and
⋂

n Bn = ∅. Notice that for any n

A = A1 ∪ · · · ∪ An ∪ Bn (27)

and hence by finite additivity of P0

P0(A) = P0(A1) + · · ·+ P0(An) + P0(Bn) (28)

equivalent to

P0(A1) + · · ·+ P0(An) = P0(A)−P0(Bn) (29)

Since Bn ↓ ∅ implies5 that P0(Bn) ↓ 0 by assumption, taking the 5 Bn ↓ ∅ means Bn is decreasing and con-
verges to the empty setlimits on both sides of the above equation yields

∑
n

P0(An) = lim
n→∞ ∑

i≤n
P0(Ai) = P0(A)− lim

n→∞
P0(Bn) = P0(A)

(30)
which shows countable additivity.

We can now proof Lemma 2.5.2. That P0 is a pre-measure over C.

Proof. First, we show that P0 is finitely additive over C. Let C(H1)

and C(H2) be disjoint cylinder sets. Using the fact that P0 is a well-
defined function, we can assume C(H1) and C(H2) are the same
rank without loss of generality. Then, by definition of cylinder sets,
we have:

C(H1) ∪ C(H2) =
{

yω|y ∈ H1, ω ∈ Σ∞
}
∪
{

yω|y ∈ H2, ω ∈ Σ∞
}

(31)

=
{

yω|y ∈ H1 ∪H2, ω ∈ Σ∞
}

(32)

= C(H1 ∪H2) (33)

Where we used the fact H1, H2 equal rank, disjoint. This leads to

P0(C(H1) ∪ C(H2)) = P0(C(H1 ∪H2)) (34)

= ∑
y∈H1∪H2

pLN(y) (35)

= ∑
y∈H1

pLN(y) + ∑
y∈H2

pLN(y) (36)

= P0(C(H1)) + P0(C(H2)) (37)

Hence, P0 is finitely additive over C.

Now we show P0 is countably additive. Equip Σ with the discrete
topology. Since Σ is finite, so is Σ∞ by Tychonoff. Then by proper-
ties of the product topology over discrete finite spaces, all cylinder
sets in Σ∞ are compact. Let C1 ⊃ C2 ⊃ . . . be a decreasing sequence

large language models 10

of cylinder sets and C1 ∩ C2 ∩ · · · = ∅. For the sake of contradic-
tion, assume that P0(

⋂
n Cn) > 0, this implies all Cn ̸= ∅. How-

ever, by Cantors Intersection Theorem,
⋂

n Cn ̸= ∅, contradicting
the assumption, hence P0(

⋂
n Cn) = 0, and by Lemma 2.5.3, P0 is

countably additive.

It remains to show P0(Ω) = 1. Recall that we have Ω = Σ∞
=

C(Σk
) ∈ C = F . This means we have

P0(Ω) = P0(C(Σ
1
)) (38)

= ∑
y∈Σ

(y) (39)

= ∑
y∈Σ

pLN(y|bos) = 1 (40)

Step 4: Apply Carathéodory’s Extension Theorem to extend P0 into
a Measure P

Carathéodory’s Extension Theorem

Given an algebra A over some set Ω and a probability pre-
measure P0 : A → [0, 1], there exists a probability space
(Ω,F , P) such that A ⊂ F and P|A = P0. Furthermore, the
σ-algebra F depends only on A and is minimal and unique,
which is denoted as σ(A), and the probability measure P is
unique.

Proof. Chapter 11 in Billingsley (1995), beyond scope of this course.

Applying Carathéodory’s Extension Theorem, we know there exists
a probability space (Σ∞, σ(C), P).

Step 5: Constructing a R.V (Defining a SM) We now want to con-
struct a σ-algebra over Σ∗ ∪ Σ∞ and then map elements from Σ∞ to
Σ∗ ∪ Σ∞. Given H ⊂ Σk, define a rank-k cylinder set in Σ∗ ∪ Σ∞ to
be

C(H)
def
= {yω|y ∈ H, ω ∈ Σ∗ ∪ Σ∞} (41)

The suffix ω comes from Σ∗ ∪Σ∞, so it means that they can be finite

and do not contain eos. Define C def
=

⋃∞
k=1 Ck, then σ(C) is a σ-

algebra as Carathéodory’s Extension Theorem. We can then define
the random variable ω ∈ Σ∞

x(ω) =

ω<k if k is the fist eosin ω

ω otherwise
(42)

large language models 11

A sufficient condition for tightness

An LNM is tight if and only if p̃EOS(t) = 1 for some t or
∑∞

t=1 p̃EOS(t) = ∞

large language models 12

2 Classical Language Models (Finite-State Language Models)

Informal definition of a finite-state language model

A language model pLM is a finite-state if it defines only finitely
many unique conditional distributions pLM(y|y). In other
words, there are only finitely many contexts y which define the
distribution over the next symbol pLM(y|y).

2.1 Weighted Finite-state Automata

Before we introduce finite-state language models, we go into the theory
of finite-state automata.

Finite-state Automata

A finite-state automaton (FSA) is a 5-tuple (Σ, Q, I, F, δ) where
• Σ is an alphabet;
• Q is a finite set of states;
• I ⊆ Q is the set of initial states;
• F ⊆ is the set of final or accepting states;
• A finite multiset δ ⊆ Q × (Σ ∪ {ε}) × Q. Elements of δ are

generally called transitions.

A natural question to ask is what will happen for a state-symbol
pair (q, a) when there is more than one possible transition allowed un-
der the relation δ. In such case, we take all implicit transitions simul-
taneously, which leads us to a pair of definitions.

Deterministic finite-state automaton

A FSA A = (Σ, Q, I, F, δ) is deterministic if
• it does not have any ε-transitions;
• for every (q, a) ∈ Q× Σ, there is at most one q′ ∈ Q such that

q a→ q′ ∈ δ;
• there is a single initial state |I| = 1.
Otherwise, A is non-deterministic

An important but not obvious result is that the classes of deter-
ministic and non-deterministic FSA are equivalent, in the sense that
you can always represent a member of one class with a member of
the other. If the automaton ends up, after reading in the last symbol
of the input string in one of the final states qψ ∈ F, we say that the
automaton accepts that string. A finite-state automaton is therefore a
computational device that determines whether a string satisfies a con-

large language models 13

dition. A string that satisfies this condition is said to be recognized by
the automaton and the set of all string satisfying this condition form
the language of the automaton.

Language of a finite-state automaton

Let A = (Σ, Q, I, F, δ) be an FSA. The language of A, L(A) is
defined as

L(A) def
= {y|y is recognized by A} (43)

Abstractly, a FSA is hence a specification of a set of rules that strings
must satisfy to be included in its language. The set of languages that
FSA can recognize is known as the class of regular languages.

Regular Language

A language L ⊆ Σ∗ is regular if and only if it can be recognized
by an unweighted FSA, i.e., if there exists a FSA A such that
L = L(A).

A common and very useful augmentation to FSA is through the
addition of weights on the transitions. Usually, the general theory of
WFSA makes use of semiring theory (covered in NLP and AFLT), for
this course, we focus on real-valued weights.

Real-weighted finite-state automaton

A real-weighted finite-state automaton (WFSA) A is a 5-tuple
(Σ, Q, δ, λ, ρ) where
• Σ is a finite alphabet;
• Q is a finite set of states;
• δ ⊆ Q× (Σ ∪ {ε})×R×Q a finite multiset of transitions;
• λ : Q→ R a weighting function over Q (initial weights);
• ρ : Q→ R a weighting function over Q (final weights).
So basically, the set of initial states are I = {q ∈ Q|λ(q) ̸= 0}
and final states F = {q ∈ Q|ρ(q) ̸= 0}.

Of course, similar to graph theory, we can define a WFSA using a
transition matrix.

Transition Matrix

Let A = (Σ, Q, δ, λ, ρ) be a WFSA. For any a ∈ |Σ, we define the
symbol-specific transition matrx T(a) as the transition matrix of
the graph restricted to a-labelled transitions. We also define the

large language models 14

(full) transition matrix as T def
= ∑a∈Σ T(a).

A path is an important concept when talking about (weighted) finite-
state automata, as it defines the basic structure by which a string is
recognized or weighted. We now give a formal definition of a path
and discuss how to weight paths.

Path

A path π is an element of δ∗ with consecutive transitions. The
length of a path is the number of transitions in it denoted as |π|,
we use p(π) and n(π) to denote the origin and the destination
of a path, respectively. The yield of the path is the concatenation
of the input symbols on the edges along the path, which we will
mark with s(π). We denote the set of paths with Π.
• Π(A) as the set of all paths in automaton A;
• Π(A, y) as the set of all paths in the automaton A with the

yield y ∈ Σ∗;
• Π(A, q, q′) as the set of all paths in automaton A from state q

to state q′.

Path Weight

The inner path weight wI(π) of a path π is defined as

wI(π) =
N

∏
n=1

wn (44)

The (full) path weight of a path π is then defined as

w(π) = λ(p(π))wI(π)ρ(n(π)) (45)

A path π is called accepting or successful if w(π) ̸= 0.

String Acceptance Weights and Weighted Regular Languages When we
introduced unweighted FSA, we defined the important concept of rec-
ognizing a string and recognizing a language. We generalize these con-
cepts to the very natural quantity of the weight assigned by a WFSA
to a string y ∈ Σ∗, i.e., its acceptance weight, or stringsum, as the sum
of the weights of the paths that yield y.

large language models 15

Stringsum

The stringsum, string weight or acceptance weight of a string
y ∈ Σ∗ under a WFSA A is defined as

A(y) def
= ∑

π∈Π(A,y)
w(π) (46)

This naturally generalizes the notion of acceptance by an unweighted
FSA -whereas an unweighted FSA only makes a binary decision of ac-
cepting or rejecting a string, a WFSA always accepts a string with a
specific weight. This leads to the definition of weighted language of
the WFSA.

Weighted language of a WFSA

Let A be a WFSA. Its (weighted) language is defined as

L(A) def
= {(y,A(y))|y ∈ Σ∗} (47)

We say that a language is a weighted regular language if it is a lan-
guage of some WFSA. Lastly, we also define the full and state-specific
allsum of the automaton. The former refers to the total weight as-
signed to all possible strings, or all possible paths where the latter
refers to the sum of path weights of the paths stemming from a spe-
cific state.

State-specific allsum

Let A = (Σ, Q, δ, λ, ρ) be a WFSA. The allsum of a state q ∈ Q
is defined as

Z(A, q) = ∑
π∈Π(A),q1=q

wI(π)ρ(n(π)) (48)

State-specific allsums are also referred to as backward values and
are often denoted as β(q).

WFSA allsum

Let A = (Σ, Q, δ, λ, ρ) be a WFSA. The allsum of A is defined
as

Z(A) = ∑
y∈Σ∗
A(y) = ∑

y∈Σ∗
∑

π∈Π(A,y)
w(π) = ∑

π=Π(A)
w(π) (49)

large language models 16

Accessibility and Probabilistic WFSA An important property of states
of a WFSA which we will need when investigating the tightness of
finite-state language models is accessibility.

(Co)-Accessible and useful states

A state q ∈ Q of a WFSA is accessible if there is a non-zero-
weighted path to q from some state q′ with λ(q′) ̸= 0; it is
co-accessible state if there is a non-zero-weighted path from
q to some state q′′ with ρ(q′′) ̸= 0. It is useful if it is both
accessible and co-accessible, i.e., q appears on some non-zero-
weighted accepting path.

Trim automaton

Trimming a WFSA means removing its useless states. Re-
moving the non-useful states means removing their rows and
columns from T as well as their rows from

−→
λ and −→ρ , yielding

possibly smaller T′,
−→
λ ′ and −→p ′.

We will use WFSAs to specify language models. However, not every
WFSA is a language model. Generally, the weight of a string could be
negative if we allow arbitrary real weights. Thus, a restriction we will
impose on all weighted automata that represent finite-state language
models is that the weights be non-negative. Furthermore, a special
class of WFSAs that will be particular interest later is probabilistic
WFSAs.

Probabilistic Weighted Finite-State Automaton

A WFSA A = (Σ, Q, δ, λ, ρ) is a probabilistic FSA (PFSA) if

∑
q∈Q

λ(q) = 1 (50)

and, for all q ∈ Q and all outgoing transitions q a/w−→ q′ ∈ δ it
holds that λ(q) ≥ 0, ρ(q) ≥ 0, w ≥ 0 and

∑
q a/w−→q

w + ρ(q) = 1 (51)

This means that the initial weights of all the states of the automa-
ton form a probability distribution (the initial weight of a state cor-
responds to the probability of starting in it), as well as that, for any
state q in the WFSA, the weights of its outgoing transitions (with any
label) together with its final weight form a valid discrete probability

large language models 17

distribution. In a certain way, probabilistic FSA naturally correspond
to locally normalized language models.

2.2 Finite-state Language Models

We can now formally define what it means for a language model to be
finite-state:

Finite-state language models

A language model pLM is finite-state if it can be represented by
a weighted finite-state automaton, i.e., if there exists a WFSA
A = (Σ, Q, δ, λ, ρ) such that L(A) = L(pLM).

Given an WFSA A, there are two established ways of defining a
probability of string. In a probabilistic FSA, any action from a state
q ∈ Q is associated with a probability. Since the current state com-
pletely encodes all the information of the input seen so far in a finite-
state automaton, it is intuitive to see those probabilities as conditional
probabilities of the next symbol given the input seen so far. One can,
therefore define the probability of a path as the product of these indi-
vidual "conditional" probabilities.

String probabilities in a PFSA.

Path Probability in a PFSA

We call the weight of a path π ∈ Π(A) in a probabilistic FSA
the probability of the path π.

This alone is however not enough to define the probability of any
particular string y ∈ Σ∗ since there might be multiple accepting paths
for y. Naturally, we define the probability of y as the sum of the
individual paths that recognize it:

String probability in a PFSA

We call the stringsum of a string y ∈ Σ∗ in a PFSA the proba-
bility of the string y

pA(y)
def
= A(y) (52)

Notice that these two definitions did not require any normalization
over all possible paths or strings, this closely resembles the way we
defined a locally normalized models based on the conditional proba-
bilities of a sequence model. Such definitions of string probabilities are

large language models 18

attractive as the summation over all possible strings is avoided. Are
they tight however? Do they sum to 1?

String Probabilities in a General WFSA To define string probabilities in
a general WFSA, we used the introduced notations of stringsum and
the allsum. The allsum allows us to tractably normalize the stringsum
to define the globally normalized probability of a string y as the pro-
portion of the total weight assigned to all strings that is assigned to
y.

String probability in a WFSA

Let A = (Σ, Q, δ, λ, ρ) be a normalizable WFSA with non-
negative weights. We define the probability of a string y ∈ Σ∗

under A as

pA(y)
def
=
A(y)
Z(A) (53)

A language model induced by a WFSA

Let A = (Σ, Q, δ, λ, ρ) be a WFSA. We define the language
model induced by A as the following probability distribution
over Σ∗

pLMA(y)
def
= pA(y) (54)

It is easy to see that while global normalization requires the com-
putation of the allsum, language models induced by WFSAs, through
our definition are globally normalized, and thus always tight. In the next
section, we will consider how the quantities for needing our definition
can be computed. Particularly, Z(A), as this involves the summation
over possibly infinitely many terms and therefore requires some clever
tricks.

2.3 Normalizing Finite-state Language Models

In this subsection, we develop an algorithm for normalizing a glob-
ally normalized language model defined by a WFSA, an algorithm for
computing the all sum Z(A) whenever this quantity is finite. More-
over, this derivation will also reveal necessary and sufficient conditions
for WFSAs to be normalizable.

Converting a matrix of pairwise pathsums to the allsum. Before
we consider how to compute Z(A), let us consider a simpler problem.
Suppose we had a matrix M, which contained at the entry Mij the sum

large language models 19

of all inner weights over all paths between the states i and j, i.e.,

Mij = ∑
π∈Π(A,i,j)

wI(π) (55)

How could we compute Z(A)?

Z(A) = ∑
π∈Π(A)

w(π) (56)

= ∑
π∈Π(A)

λ(p(π))wI(π)ρ(n(π)) (57)

= ∑
i,j∈Q

∑
π∈Π(A,i,j)

λ(p(π))wI(π)ρ(n(π)) (58)

= ∑
i,j∈Q

λ(p(π))
(

∑
π∈Π(A,i,j)

wI(π)
)

ρ(n(π)) (59)

= ∑
i,j∈Q

λ(i)Mi,jρ(j) (60)

=
−→
λ M−→ρ (61)

Computing the matrix of pairwise pathsums Let T be the transition ma-
trix of the automatonA. Notice that the entry Tij by definition contains
the sum of the inner weights of all paths of length exactly 1 (individual
transitions) between the states i and j. We also define T0 = I, meaning
that the sum of the weights of the paths between i and j of length zero
is 0 if i ̸= j and q. If i = j this corresponds to not transitioning, i.e.,
staying in place, if i = j. We state a basic result from graph theory.

Let T be the transition matrix of some weighted directed graph G.
Then the matrix Td contains the allsum of paths of length exactly
d, i.e.

Td
i,j = ∑

π∈Π(A,i,j),|π|=d
wI(π) (62)

Proof. The proof was done in NLP Assignment 3.

Then, it follows directly that the matrix

T≤d def
=

d

∑
k=1

Tk (63)

contains the pairwise pathsums of paths of length at most d. In gen-
eral, the WFSA representing a n-gram language model can of course be
cyclic. THis means that the number of paths in Π(A) might be infinite
and they might be arbitrary length (which is the result of looping in a
cycle arbitrarily many times). To compute the pairwise pathsums over
all possible paths, we, therefore have to compute

T∗ def
= lim

d→∞
T≤d =

∞

∑
d=0

Td (64)

large language models 20

This is exactly the matrix form of the geometric sum, similarly to the
scalar, we can manipulate the above equation to arrive to a closed-form
expression for computing it.

T∗ =
∞

∑
d=0

Td (65)

= I +
∞

∑
d=1

Td (66)

= I +
∞

∑
d=1

TTd−1 (67)

= I + T
∞

∑
d=1

Td−1 (68)

= I + T
∞

∑
d=0

Td (69)

= I + TT∗ (70)

If the inverse of I− T exists, we can further rearrange this equation to
arrive at

T∗ = I + TT∗ (71)

T∗ − TT∗ = I (72)

T∗ − T∗T = I (73)

T∗(I− T) = I (74)

T∗ = (I− T)−1 (75)

This means that, if I− T exists, we can compute the pairwise pathsums
by simply inverting it! Using the remark above on how to convert a
matrix of pairwise pathsums into the full allsum, we can therefore
see that we can globally normalize an n-gram language model via
matrix inversion! The runtime of inverting a N × N matrix is O(N3),
and N = |Q| for a transition matrix of a WFSA with states Q, we
can globally normalize n-gram language model in time cubic in the
number of its states. This is a special case of Lehmann (1977). We still
have to determine when the infinite sum in Equation 64 converges,
one can see by writing the product Td in terms of its eigenvalues that
the entries of Td diverge towards ±∞ as soon as the magnitude of any
of T’s eigenvalues are larger than 1. This means ∥T∥2 < 1 (spectral
norm) is a necessary condition for the infinite sum to exist. This is,
however, also a sufficient condition: if ∥T∥2 < 1, all of T’s eigenvalues
are smaller than 1 in magnitude, meaning the eigenvalues of I− T are
strictly positive and the matrix I− T is invertible. We can speed this
up by decomposing the automaton into SCCs (see AFLT Assignment
3), if it decomposes.

large language models 21

Locally Normalizing a Globally Normalized Finite-state Language Model As
any LM (and thus any globally-normalized) model with a normaliz-
able energy function can also be locally normalized. In the case of
finite-state language models, we can actually explicitly construct the
WFSA representing the locally normalized variant using a procedure
that is conceptually similar to the allsum algorithm described here. In
contrast to the procedure presented here, the local normalization algo-
rithm computes the pathsums of the paths stemming from every pos-
sible state q indiviudally and then reweights the transitions depending
on the pathsums of their target states r. This is an instance of the more
general weight pushing algorithm.

PFSAs and WFSAs are equally expressive

Normalizable weighted finite-state automata with non-negative
weights and tight probabilistic finite-state automata are equally
expressive.

2.4 Tightness of Finite-state Models

Any normalizable globally normalized finite-state language model is
tight by definition because the sum of the scores over all finite strings
is finite, and since they are normalized, they sum to 1. We therefore
focus on locally normalized finite-state models and provide necessary
and sufficient conditions for their tightness. Locally normalized finite-
state models are exactly PFSAs, the tightness of PWFSA can be easily
characterized as

A sufficient condition for tightness of finite-state language
models

A PFSA is tight if and only if all accessible states are also co-
accessible.

2.5 The n-gram assumption

n-gram

assumption In words, the n-gram assumption states the prob-
ability of a word yt only depends on n − 1 previous words

yt−1, . . . yt−n+1 where y0
def
= BOS. We can write the n-gram as-

sumption as a conditional independence assumption, i.e,

pSM(yt|y<t)
def
= pSM(yt|yt−1 . . . yt−n+1)

def
= pSM(yt|yt−n−1:t−1)

(76)

large language models 22

The sequence yt−1 . . . yt−n+1 is often called the history or the
context.

Given this definition, where the conditional probabilities pSM(yt|yt−n−1:t−1)

depends on n − 1 previous symbols, we can run into problems with
negative indices for t < n. To handle these cases, we pad the sequences
with the BOS symbols at the beginning, that is, we will assume the se-
quence ȳ1 . . . ȳt for t < n− 1 are transformed as

ȳ1ȳ2 . . . ȳt 7→ BOS . . . BOS︸ ︷︷ ︸
n−1−ttimes

ȳ1ȳ2 . . . ȳt (77)

By definition, n-gram language models can only model dependencies
spanning n tokens or less, by limiting the length of the relevant context
when determining pSM(yt|y<t) to the previous n tokens, the n-gram
assumption limits the number of possible probability distributions that
is needed to be tracked to O(|Σ|n−1). This is still huge, the next section
deals with this.

2.6 Representation-based n-gram Models

In this section, we consider for the first time what an actual imple-
mentation of a finite-state, or more precisely, a n-gram language model
might look like. Concretely, we will define our first parameterized lan-
guage model in our General language modeling framework by defin-
ing a particular form of the encoding function enc as a simple multi-
layer feed-forward neural network.

Let us first consider an alternative, possibly the simplest way to de-
fine a (locally normalized) n-gram language model: by directly parametriz-
ing the probabilities of each of the symbols y in the distribution pSM(ȳ|ȳ)
for any context ȳ, that is

θ
def
=

θy|y
def
= pSM(y|y)

∣∣∣∣ y ∈ Σ̄, y ∈ Σ̄n−1, θy|y ≥ 0, ∑
y′∈Σ̄

θy′ |y = 1

(78)

The MLE solution is therefore

pSM(yn|y<n) =
C(y1, . . . , yn)

C(y1, . . . , yn−1)
(79)

The model defined above is however, unable to take into account the
relationships and similarities between words. The general modeling
framework 6 allows us to remedy this using the distributed word rep- 6 In that framework, we associate each

word y with its vector representation
e(y), i.e. its embedding, and we com-
bine those into the embedding matrix E

resentations.

To be able to use the embeddings in our general framework, we now
just have to define the concrete form of the context-encoding function

large language models 23

enc. In the case of the neural n-gram model, which we consider here
and as defined by (Bengio et el., 2003), the representations of the con-
text y<t, enc(y<t) are defined as the output of a neural network which
looks at the previous n− 1 words in the context:

enc(y<t)
def
= enc(yt−1, yt−2, . . . , yt−n+1) (80)

where enc is a neural network we define in more detail shortly. The
full language model is therefore defined through the conditional dis-
tributions

pSM(ȳt|ȳ<t)
def
= softmax

(
enc(yt−1, yt−2, . . . , yt−n+1)

⊤E + b
)

ȳt
(81)

resulting in the locally normalized model

pLN(y) = softmax
(

enc(ȳT , ȳT−1, . . . , ȳT−n+2)
⊤E+b

)
EOS
·

T

∏
t=1

softmax
(

enc(yt−1, yt−2, . . . , yt−n+1)
⊤E+b

)
ȳt

(82)
for y ∈ Σ∗.

large language models 24

3 Recurrent Neural Language Models

Recurrent neural networks capture the idea of sequential processing of
strings relatively naturally while also making decisions based on an
infinite context. They are a class of models that is theoretically capable
of recognizing all computatble languages.

Real-valued Recurrent Neural Network

Let Σ be an alphabet. A (deterministic) real-valued recurrent
neural network R is a four-tuple (Σ, D, f, h0) where
• Σ is the alphabet of input symbols;
• D is the dimension of R;
• f : RD × Σ → RD is the dynamics map, i.e., a function defin-

ing the transitions between subsequent states;
• h0 ∈ RD is the initial state.

We can analogously define rational-valued recurrent neural net-
works as RNNs with the hidden state space QD instead of RD.

To define language models using recurrent neural networks, we will
use them as encoder functions enc in our general language modeling
framework. To connect the previous language model with the general
LM framework, we define the RNN encoding function.

Recurrent Neural Encoding Function

Let R = (Σ, D, f, h0) be a RNN. A recurrent neural encoding
function encR is a representation function that recursively en-
codes strings of arbitrary lengths using its dynamics map f.

encR(y<t+1)
def
= f(encR(y<t), yt) ∈ RD (83)

and
encR(y<1)

def

= h0 ∈ RD (84)

Hidden State

Let R = (Σ, D, f, h0) be an RNN. The hidden state ht ∈ RD de-
scribes the state ofR after reading yt. It is recursively computed
according to the dynamics map f as follows:

ht
def
= encR(yt<t+1) = f(ht−1, yt) (85)

Recurrent Neural Sequence Models Note that a RNN based on the pre-
vious definitions on its own does not yet defined a sequence model,

large language models 25

but simply a context encoding function encR : Σ̄∗ → RD. To define a
sequence model based on an RNN, we simply plug the RNN encoding
function into the general language modeling framework.

Recurrent neural sequence model

Let R = (Σ, D, f, h0) be a recurrent neural network and E ∈
R|Σ̄|×D a symbol representation matrix. A D-dimensional re-
current neural sequence model over an alphabet Σ is a tuple
(Σ, D, f, E, h0) defining the sequence model of the form

pSM(yt|y<t)
def
= f∆|Σ̄|−1(EencR(y<t))yt = f∆|Σ̄|−1(Eht−1)yt (86)

By far the most common choice of the projection function is the
softmax. In the course notes, they will refer to RNN sequence
models whose next-symbol probability distributions are com-
puted using the softmax function as softmax RNN sequence
models.

One-hot encoding

Let Σ be an alphabet and n : Σ→ {1, . . . , |Σ|} a bijection (i.e., an
ordering of the alphabet, assigning an index to each symbol in
Σ). A one-hot encoding [[·]] is a representation function of the
symbols in Σ which assigns the symbol y ∈ Σ the n(y)th basis
vector

[[y]] def
= dn(y) (87)

where here dn is the nth canonical basis vector, i.e., a vector of
zeros with a 1 at position n.

Activation function

Let R = (Σ, D, f, h0) be a recurrent neural network. If the hid-
den states ht f the RNN are computed as

ht = σ(g(ht−1, y)) (88)

for some function g : RD ×Σ→ RD and some function σ : R→
R which is computed element wise, which is σ(x)d = σ(xd) for
all d = 1, . . . D and x ∈ RD, we call σ and activation function.

General Results on Tightness

large language models 26

Tightness of Recurrent Neural Sequence Model

A softmax recurrent neural sequence model is tight if for all
times steps t it holds that

s∥ht∥2 ≤ log t (89)

where s def
= maxy∈Σ ∥e(y)− e(EOS)∥2

RNNs with bounded dynamics maps are tight

A softmax recurrent neural sequence model R = (Σ, D, f, h0)

with a bounded dynamics map f, i.e., with a dynamics map f
such that

|f(x)d| ≤ M (90)

for some M ∈ R for all d = 1, . . . , D and all x ∈ RD is tight.

A special case of the above theorem is RNNs with bounded ac-
tivation functions. Those are tight if the activation function itself is
bounded. This implies the standard sigmoid and tanh activted RNNs
are tight. However, this does not hold for RNNs with unbounded
activation functions, e.g. the ReLU.

Elman Sequence Model

An Elman sequence model R − (Σ, D, U, V, E, bh, h0) is a D-
dimensional recurrent sequence model over an alphabet Σ with
the following dynamics map

ht = σ(Uht−1 + Ve′(yt) + bh) (91)

Here, e′· : Σ → RR is the input symbol embedding function
which represents each symbol y ∈ Σ as a R-dimension vector
and σ is an element-wise non-linearity. bh ∈ RD, U ∈ RD×D,
and V ∈ RD×R.

Heaviside function

The Heaviside function is defined as

H(x) =

1 if x > 0

0 otherwise
(92)

large language models 27

Heaviside Elman Network

A Heaviside Elman network (HRNN) is an ELman network
with the Heaviside function H as the non-linearity.

large language models 28

4 Transformers

The main characteristic of RNNs is the use of a single hidden state ht

to represent an arbitrary prefix of any string y<t up to the current time
step t. While this allows RNNS to model strings of any length, it also
means that arbitrarily long strings must be compressed into this hid-
den vector of fixed size. Intuitively, this becomes increasingy difficult
as the length of the context grows: As the amount of information to
be compressed into the hidden state increases with the prefix length,
the hidden state may struggle to model the entirety of the preceding
context.

The simplest naive way to go about this is to retain the contex-
tual encodings of all prefixes of the string, with this, we avoid the
need to summarize the entire context into a single state. Having de-
cided to keep around the encodings of all symbols in the string, let us
think about parallelizing the process of encoding a string, e.e., com-
puting enc(y), remember the very general way in which RNNs build
a representation of the string y<t by incrementally modifying ht. The
workaround for the issues with sequential processing of RNNs is to
process the context for each yt independently, without relying on the
encodings of the previous symbols, thus avoiding the sequential bot-
tleneck. Nevertheless, we still want the contextual encoding of yt to
contain information about the rest of the string, i.e., the preceding con-
text. How can we achieve that without relying on recurrence? Again,
we grab onto the simplest solution: to compute the symbol encodings
for each symbol yt, based on only the static symbol encodings e′(yt),
which do not require any recurrence.

4.1 Formal Definition of Transformers

Transformer Network

A transformer network T is a tuple (Σ, D, encT) where
• Σ is the alphabet of input symbols,
• D is the dimension of T , and
• encT is the transformer encoding function.

Transformer Network

Let T = (Σ, D, encT) be a transformer network. The hidden
state ht ∈ RD describes the state of T after reading y≤t. It is
defined with respect to the transformer encoding function encT

large language models 29

as follows
ht

def
= encT (y≤t) (93)

The hidden state ht of the transformer does not have any de-
pendence on the preceding hidden states themselves.

Transformer sequence model

Let T be a transformer network and E ∈ R|σ̄|×D a symbol
representation matrix. A D-dimensional transformer sequence
model over the alphabet Σ is a tuple (Σ, D, encT , E) defining
the sequence model of the form

pSM(ȳt|y<t)
def
= softmax(Eht−1) = softmax(EencT (y<t))ȳt

(94)

To avoid over-compressing information about sentences into a sin-
gle vector, a transformer retains the encodings (captured in the hidden
states) of all possible prefixes of the string, which we can equivalently
simply regard as encodings of individual symbols augmented with
the information from the preceding string. However, rather than com-
puting the encoding sequentially like an RNN, the encodings of the
individual symbols are computed with so-called attention mechanism.

Attention

Let f : RD ×RD → R be a scoring function and f∆D−1 a pro-
jection function. Furthermore, let q ∈ RD, Kt = (k⊤1 , . . . , k⊤t) ∈
Rt×D and Vt = (v⊤1 , . . . , v⊤t) ∈ Rt×D. Attention over Kt, Vt,
also denoted by Att(qt, Kt, Vt) : RD ×Rt×D ×Rt×DtoRD is a
function computing the vector a in the following two-step pro-
cess:

st = (s1, . . . , st)
def
= f∆D−1(f (q, k1), f (q, k2), . . . , f (q, kt)) (95)

at = Att(qt, Kt, Vt)
def
= s1v1 + s2v2 + · · ·+ stvt (96)

The scoring function f is abstractly simply a parameter of the model
which we can choose freely, intuitively, it should express the relevance
of a particular key k to the query q, the more the key is relevant to
the query, the more attention the model will put the value associated
to that key. The projection function then transforms the computed
scores ensuring that the transformed scores sum to 1. The vector of
the transformed scores s is then used to compute the result of the
attention function - the vector a, which is a convex combination of the

large language models 30

values v passed to the attention function.

Abstractly, therefore the keys contain the information used for <in-
dexing> the values with the specific query.

The scoring function The scoring function is supposed to measure the
<relevance> of a particular value for a query q through the values’
keys. The most common choice for f is the dot product between the
query and key, which is often scaled by the square root of the vector
dimensionalality.

f (q, k) =
1√
D
⟨q, k⟩ (97)

Transformer Layer

Let Q, K, V, and O be parameterized functions from RD to RD.
A transformer layer is a function T : RT×D → RT×D that takes
as input a sequence of vectors X = (x⊤1 , x⊤2 , . . . , x⊤T) and returns
Z = (z⊤1 , z⊤2 , . . . , z⊤T) ∈ RT×D according to the following steps:

at = Att(Q(xt), K(Xt), V(Xt)) + xt (98)

zt = O(at) + at (99)

for t = 1, . . . , T, so that T(X) def
= Z = (z⊤1 , z⊤2 , . . . , z⊤T) ∈ RT×D

We now have all the building blocks to define the full transformer
architecture, which computes the encodings of the string prefixes (and
thus the hidden states).

Transformer

For L ∈ N, we define a L-layer transformer model as a D-
dimensional transformer sequence model over an alphabet Σ

where the hidden state ht
def
= encT (y1, . . . , yt) = encT (y) is

computed as follows:

X1 def
= (e′(y0), e′(y1), . . . , e′(yt)) (100)

Zℓ = Tℓ(X
ℓ) for 1 ≤ ℓ < L (101)

Xℓ+1 = Zℓ for 1 ≤ ℓ < L (102)

ht = F(zL
t) (103)

where Tℓ for ℓ = 1, . . . , L represent L different transformer layers
with decoupled parameter. F : RD → RD is a transformation

large language models 31

function applied to the contextual encoding of the last symbol
in the Lth layer, and e′ : Σ → RD is a symbol representation
function computing the initial representations of the symbols
passed to the first layer of the transformer.

We can now show how the attention mechanism can be conve-
niently applied to entire strings at once. Specifically, we focus on
the case where the attention scoring function f is implemented as a
dot-product.

What does the attention mechanism we defined earlier do in this case? Given
a query qt and a matrix of key values K = (k⊤1 , . . . , k⊤t) ∈ Rt×D, the
scoring function simply computes

uj = f (qt, kj) = q⊤t kj (104)

In this case, the vector u = (u1, . . . , ut) of unormalized attention weights
can simply be computed as a single matrix-vector product

u = q⊤t K⊤ (105)

Furthermore, with this, attention can be easily extended to consider
many queries in parallel by stacking multiple queries into a matrix

Q def
= (q⊤1 , q⊤2 , . . . , q⊤t), as we detail now. Consider now the product

U = QK⊤ (106)

Each entry of the resulting matrix Uij is exactly the dot-product be-
tween the query qi and the key kj. The rows of U contain the unnor-
malized score vectors ui from the definition of the attention mecha-
nism. This means if we apply the normalization function f∆D−1 row-
wise (such that the sums of the elements in each row equal 1), we end
up with exactly the required normalized scores required for combin-
ing the values from the value matrix. We some abuse of notation (just
like the paper, which Ryan complained during the NLP lecture), we
can simply write that as

S def
= (s⊤1 , . . . , s⊤t)

def
= f∆D−1(U) = f∆D−1(QK⊤) (107)

The rows of f∆D−1(U), therefore, represent the normalized attention
weights. This brings us to the final step of the matrix-multiplication-
based attention mechanism: Combining the values based on the com-
puted attention weights. Again, this can be performed by a single
matrix multiplication. Notice that the value vectors are the same for all
queries - they are simply combined with different attention weights
based on the query. Right-multiplying the transposed values matrix

large language models 32

V = (v⊤1 , . . . , v⊤t) with S, therefore, perform the convex combination
of the value vector v⊤1 , . . . , v⊤t such that

ai = siV⊤ = Si,:V⊤ (108)

and thus
A def

= (a1, . . . , at) = SV⊤ (109)

Together, this means that given a sequence of symbol encodings X,
we can compute the attention values of all queries with a single ma-
trix multiplication, as long as the scoring function is the (scaled) dot-
product. In this course, we refer to this version of attention as an
attention block, which intuitively, simply replaces the element-wise def-
inition of the attention mechanism defined previously a more efficient
and concise definition through matrix multiplications.

Attention Block

Let Q, K, and V be parameterized functions from RT×D to RT×D

and X ∈ RT×D the matrix of input encodings. An attention
block is the function A : RT×D → RT×D defined as

A(X) = f∆D−1

(
Q(X)K(X)⊤

)
V(X) (110)

Further, we define the attention matrix as the square matrix

U def
= Q(X)K(X)⊤ ∈ RT×T .

To recover the autoregressive nature of the language model, we,
therefore, posthoc modify the above equation to allow each symbol to
attend only to itself and to preceding symbols, while still being able
to implement it using matrix multiplication. We do that by adding a
mask to zero out the unwanted elements of U.

Masked Attention Block

Let Q(·), K(·), and V(·) be parameterized functions from RT×D

to RT×D. A masked attention block is a function A(X, M) :
RT×D → RT×D defined as

A(X, M) = softmax(Q(X)K(X)⊤ ⊙M)V(X) (111)

where ⊙ is the element-wise product between matrices, and
M ∈ Rℓ×ℓ, the masking matrix, is constructed as follows

Mi,j =

1 if i ≤ j

−∞ otherwise
for 0 ≤ i, j < T (112)

large language models 33

The current model we defined does not incorporate any notion of
word word into the contextual representations of symbols or the en-
codings of the context ht. Currently, all operations composing the
transformer are position-agnostic: The convex combination of the value
vectors V will be the same, no matter the permutation of the vectors.
The keys also cannot contain any positional information. To be able to
take into account the word order in a transformer, we have to explic-
itly provide the positional information to the model. The simplest way
to do this is to augment the static symbol encodings in the first trans-
former layer with positional encodings, in the form of vectors which can
be added or concatenated to the static encodings of symbols.

Positional encoding

A positional encoding is a function fpos : N→ RD

And very straightforward:

Position-augmented representation function

Let e′ : Σ → RD be a symbol representation function and
fpos : N → RD a positional encoding. A position-augmented
representation function of a symbol yt in a string y is the repre-
sentation function e′pos : Σ→ RD defined as

e′pos(yt)
def
= e′(yt) + fpos(t) (113)

Multiple heads Importantly, the transformer introduced so far com-
putes a single set of contextual representations - one for every input
symbol (at every layer of the transformer). However, we can easily
extend the model to compute multiple contextual representations for
each symbol. This is done using so-called multi-head attention, where
a single attention block is called an attention head. This increases the
representation space of the individual symbols and thus enables the
model to capture more information about the symbols and the sen-
tence. The interpretation of computing multiple representations (one
for each head) independently also invites the interpretations that each
of the heads “focuses” on a separate aspect of the text. To be able
to use the outputs of multi-head attention as inputs to the next block
again, the outputs of the different attention heads are then concate-
nated and then projected down to the output size of a single attention
block using an additional transformation.

large language models 34

Multi-Head Attention Block

Let H ∈ N be the number of attention heads, Qh(·), Kh(·), and
Vh(·) be parameterized functions from RT×D to RT×D for 0 ≤
h ≤ H, and fH : RT·H×D → RT×D defined as

MH-A(X) = fH(concat0≤h<H

(
softmax(Qh(X)Kh(X)

⊤)Vh(X)
)
)

(114)

Layer normalization As a final component of a transformer, we men-
tion layer normalization, similar to the use of residual connections,
represents a common trick in the deep learning space for ensuring
more stable and reliable gradient-based learning, as such, it is not lim-
ited to transformers.

Layer Normalization

Let x, γ, β ∈ RD, and ϵ > 0. The layer normalization function
LN : RD → RD is defined as

LN(x; γ, β)
def
=

x− x̄√
σ2(x) + ϵ

⊙ γ + β (115)

where x̄ refers to the mean of the vector x (and is subtracted
from all elements of x in the formulation above) and σ2(x) refers
to the variance of elements x. ϵ is added in the denominator to
sure the stability if σ2(x) << 1

large language models 35

5 Tokenization

There aren’t any good mathematical for a tokenizer, but we can state
the follows:

Tokenizer

A tokenizer takes a string in Σ∗ and maps it to words/tokens in
∆∗, where ∆ is a finite set of words and UNK.

Good requirements:

• Tokenizer t has all of Σ∗ in its pre-image.

An example of a tokenizer is whitespace tokenization. However
there are some considerations

• if there are too many UNKs,
• punctuation split off,
• morphology.

The solution is data driven tokenizers. Why not set Σ = all unicode
characters? Bad empirically, harder to train. All modern tokenizers
learn a segmentation

1. between word and character
2. not 100% linguistic

Byte-Pair Encoding Input: Σ, C = {x(m)}M
m=1 ⊂ Σ∗. Return: ∆, t :

Σ∗ → ∆∗ Steps:

1. Initialize ∆ to Σ
2. Find the most frequent merge in C, where a merge m is a concate-

nation of two elements in ∆, so now ∆← ∆ ∪m

Example for Merge, consider the corpus:

a a b a a _ b b

We being this with the character level, so at first we count as:

| a | a | b | a | a | _ | b | b | ∈ ∆∗

With this ∆(0) = {a, b, _}. Now we can find the most frequent
merge!

| a | a | b | a | a | _ | b | b | ∈ ∆∗

So we update ∆ to become ∆(1) = ∆(0) ∪ {aa} as aa is the most
common adjacent symbol. (ab occurs just once, ba just once, ...)

large language models 36

And hence, you get

| a a | b | a a | _ | b | b | ∈ ∆∗

Now they all occur an equal number of times, so we can choose
arbitrarily, so we can get ∆(2) = ∆(1) ∪ {b b}, and now just
continue for a finite number of times.

Now, as we said t is a function that maps from Σ∗ → ∆∗, what is the
function? Where does t come from? Function t essentially replays the
merges in the order they were added, fixing conflicts from left-to-right.

Spurious Ambiguity Suppose we had a string aaba, then we can seg-
ment it as |a|a|b|a| or |aa|b|a| which is fine since each segmenta-
tion all exist in ∆, but this introduces ambiguity that you do not want.
Both segmentations are valid under BPE, meaning both segmentations
exist in the set of learned tokens ∆ However, the choice between these
segmentations is not inherently clear, leading to ambiguity.

The pushforward t : Σ∗ → ∆∗ looks like

p(x) = ∑
y∈∆∗

y∈t−1(x)

p∆k (y) (116)

where
t−1(x) = {y|y ∈ ∆∗, t(x) = y} (117)

large language models 37

6 Generation from Language Models

A LM is a distribution p over Σ∗, but the end goal is to return text to
the user. There stochastic and deterministic methods:

• Stochastic
– Sampling x ∼ p, efficient due to local normalization. So if we

have

p(x) = p(EOS|x)
T

∏
t=1

p(xt|x<t) (118)

Then we can sample x1 ∼ p(·|BOS), x2 ∼ p(·|x1), x3 ∼ p(·|x1x2),
. . . , the runtime for each of these is O(|Σ|). But why does this
not solve the problem? This is because it often generates strings
users do not like!

• Deterministic
– Maximum argmaxx∈Σk log p(x), which is often intractable!

Greedy Search + Beam Search These are both local search techniques. In
greedy search, xi = argmaxx∈Σ∗ log(x|x1 . . . xi−1). Might not even halt,
even for tight models, and can be made arbitrarily bad. On the other
hand, beam search is a generalization of greedy search where we keep
k paths, and at every step choose the best k continuations of these. Can
also be made arbitrarily bad. Some considerations are when to stop,
how to bucket (by timestep is natural but beware tokenization)

How to handle surface form competition? Many sentences have the
same semantics, probability mass is spread more thinly among similar
ones; does it still make sense to choose the highest probability string?

Top-k sampling is to only consider the top-k most probable next
symbols in ancestral sampling. Nucleus Sampling only considers sam-
pling the next symbols that are in C(y<t) which contains the top p%
of the probability mass

Sampling adapter as function α that maps distributions over Σ to
distributions over Σ, as in p̃(·|y<t) = α(p(·|y<t)). All thresholding
algorithms are ancestral sampling on an adapted model.

large language models 38

Part II

Applications

7 Transfer Learning

Transfer learning is the idea of using knowledge gained from training
on one task in order to solve on other tasks.

Transfer learning for language models

Consider a language model pLM(y; θ) over Σ∗ trained on corpus
D = {y(n) | y(n) ∈ Σ}N

n=1. Next, consider a target task T , posed
as learning a function f : L 7→ Y , for some input space L ⊆ Σ∗

and output space Y . We say that transfer learning occurs if
parameterizing f as f θ̂, with θ̂ ⊆ θ, allows for more efficient
learning of T compared to initializing f as f θ′ , with θ′ being
some set of parameters that are sampled randomly from some
distribution.

Note that T can be any task, as long as it takes L as input. The net-
work is trained on the source task and is called a pretrained model,
and we refer to the learning process of that model as pretraining. The
process of updating the weights of a pretrained model for a new task
is called fine-tuning. Fine-tuning does not encapsulate all forms of
transfer learning, as our definition does not necessitate udating the pa-
rameters of the language model. A related concept to transfer learning
is multi-task learning, which is the idea of sharing learned informa-
tion across multiple tasks. In contrast to transfer learning, the tasks
are learned jointly rather than sequentially.

Language modeling is suitable for transfer learning since it is very
easy to scale up language modeling data. We only require some corpus
of text that approximately captures the domain we want to model.
Since the input space of language modeling is the same as the output
space it does not require any expensive labeling, it is a self-supervised
task.

7.1 ELMo

ELMo was one of the first successful transfer learning models based on
language modeling. It leverages the language modeling task to learn
word representations, that is, vectors meant to represent the meaning
of words. Whereas most previous approaches, such as word2vec and

large language models 39

GloVe, trained static word representations, the word representations
in ELMo are context-dependent.

ELMo considers two separate language models, a (standard) for-
ward language model pLM(yt | y<t) as well as a backward language
model pLMB(yt | y>t)

def
= ∏T

t=1 pLMB(yt | yt+1, . . . , yT). Both are im-
plemented by stacking L layers of LSTMs, the parameters of which
we refer to as

−→
θ and

←−
θ respectively. For a given input token yt, the

forward LSTM layers output context-dependent representations
−→
h LM

tl ,

with l ∈ [0, L] (and analogously,
←−
h LM

tl for the LSTM layers of the back-

ward language model). The deepest representations
−→
h LM

tl and
←−
h LM

tl
are fed to a softmax layer to predict the forward and backward prob-
abilities of yt. In addition to

−→
θ and

←−
θ , the parameters for token

representations and the softmax layer (denoted together as θ′) are tied
between the two networks. All parameters are optimized jointly by
maximizing the log likelihoods of the forward and backward models:

LELMo(θ) =
N

∑
n=1

T

∑
t=1

log pLM(yt
(n) | y(n)

<t ;
−→
θ , θ′)+ log pLMB(yt

(n) | y(n)
>t ;
←−
θ , θ′)

(119)

Now in order to fine-tune for a specific task, we can use the context-
specific representations hLM

tl = [
−→
h LM

tl ;
←−
h LM

tl]. One could simply take
the last layer representations hLM

tl and use those as input to a separate
model that is fine-tuned on another task. The original paper addi-
tionally experimented with learning a task-specific representation as a
scaled convex combination over the hidden representations, as follows:

ELMotask
t = γtask

L

∑
l=0

stask
l hLM

tl , (120)

where ∑L
l=0 stask

l = 1 are the outputs of a softmax function over the
hidden representations, and γtask ∈ R is meant to scale the represen-
tations.

7.2 BERT

After the success of ELMO, pre-trained BERT (Bidirectional Encoder
Representations from Transformers), a Transformer-based bidirectional
masked language model. BERT is pre-trained with the masked lan-
guage modeling objective on large scale text corpus. After pretraining,
BERT can be fine-tuned to perform different NLP task without the
need of design task-specific architectures. BERT advanced the state-of-
the-art of many NLP benchmarks at the time it was proposed.

large language models 40

In this section, we first introduce the pretraining objective of BERT.
We then describe BERT model architecture and the pretraining and
fine-tuning paradigm.

BERT Pre-training Objectives BERT is pretrained jointly with two self-
supervised tasks: masked language modeling and next sentence pre-
diction. This is done at the same time. The losses for each task are
computed and summed together:

L = LMLM + LNSP (121)

Masked Language Modeling. Masked language modeling (MLM) adapted
this idea as a novel pre-training task to overcome the drawback of the
standard unidirectional LM. In the masked language modeling setup,
the goal is to predict the omitted token from a piece of text that con-
stitutes a logical and coherent completion. For example, in the piece
of text ”The students [MASK] to learn about language models”, we pre-
dict want or like with high probability for the [MASK] position. The
goal of masked language modeling is to approximate the probability
distribution over tokens in our vocabulary as the original token at a
given masked position. Similarly to the standard language modeling
objective, we can choose model parameters by optimizing for the log-
likelihood of a dataset D. Albeit in this case, the words at a percentage
of randomly-chosen positions in D are replaced with [MASK] and the
model is given both sides of context around the masked token in order
to make its prediction:

LMLM(θ) =
N

∑
n=1

T

∑
t=1

log(yt
(n) | y(n)

<t , y(n)
>t ;)1{yt

(n)=[MASK]} (122)

However, this pretraining method will create a mismatch between
the pretraining phase and the fine-tuning phase because the mask to-
ken does not appear during the fine-tuning phase. Empirically, to deal
with this issue, it was proposed to use a special [MASK] token 80% of
the time, a random token 10% of the time and the original token 10%
of the time to perform masking.

Next Sentence Prediction. The next sentence prediction objective is in-
cluded to enable the model to capture the relationships between two
consecutive sentences. This is important because many NLP tasks
require understanding the relationship between different text inputs
(e.g., question and context for the question answering task). By pre-
training the model to predict whether a given sentence follows another

large language models 41

sentence, we can help the model learn the dependencies and relation-
ships between sentences.

The next sentence prediction objective is implemented as follows.
Given a pair of sentences, denoted as A and B, the model is trained
to predict whether B is the next sentence that follows A. This is done
by feeding the two sentences as input to the model, along with a spe-
cial [CLS] token that serves as the input representation of the entire
sequence. The model then generates a binary output that indicates
whether B is the next sentence.

BERTs Architecture BERT’s model architecture is a multi-layer bidirec-
tional Transformer encoder. BERT is a Transformer encoder model. It
takes a sequence of text tokens as input and produces their contex-
tualized representations and (optionally) predictions. We denote the
number of layers (i.e., Transformer blocks) as L, the hidden size as H,
and the number of self-attention heads as A. In all cases the feed-
forward/filter size is set to be 4H, i.e., 3072 for the H = 768 and 4096

for the H = 1024.

To make BERT handle a variety of down-stream tasks, BERT in-
put representation is able to unambiguously represent both a single
sentence and a pair of sentences (e.g., ⟨ Question, Answer ⟩) in one
token sequence. BERT use WordPiece embeddings with a 30,000 token
vocabulary. The first token of every sequence is always a special clas-
sification token ([CLS]). The final hidden state corresponding to this
token is used as the aggregate sequence representation for classifica-
tion tasks. Sentence pairs are packed together into a single sequence.
We differentiate the sentences in two ways. First, we separate them
with a special token ([SEP]). Second, we add a learned embedding to
every token indicating whether it belongs to sentence A or sentence B.

7.3 BERT Variants

RoBERTa RoBERTa (Robustly Optimized BERT Approach) is an opti-
mized version of BERT. RoBERTa uses the same model architecture
of BERT but with some improvements to the pre-training process.
RoBERTa uses a larger pre-training corpus, larger batch size, longer
training time, longer input sequence lengths, larger batch size, and a
dynamic masking strategy during pre-training.

Specifically, RoBERTa adds CC-NEWs and OpenWebText to the orig-
inal BERT pre-training data. The resulting corpus contains over 160

GB of text and approximately 2.5 billion word pieces. RoBERTa is pre-
trained with a batch size of 8,000 sequences of 512 tokens for 500k
steps, resulting in much more computation compared to BERT. The

large language models 42

dynamic masking strategy, which randomizes the masking pattern in
each epoch and helps the model to learn more robust representations
of the input text. These modifications allows it to surpass BERT and
achieve state-of-the-art performance on several NLP tasks at the time.

large language models 43

8 Parameter Efficient Finetuning

Pretrained language models are used in a wide range of NLP tasks.
When the model size becomes larger and larger, it is more and more
difficult to tune the model with limited size of annotated data. Over-
fitting easily happens, and the cost of model tuning is quite expensive.
Thus, to avoid above issues, various parameter-efficient tuning meth-
ods are proposed. In the following sections, we will first introduce
partially fine-tuning techniques. They are simple but effective, which
is widely used in Transformer model tuning. Besides selecting part of
parameters for tuning, another line of work explores how to keep the
model frozen, and add extra tuned parameters. These newly added
and tuned modules are called adapters.

8.1 Partial Fine-tuning

This type of tuning methods fine tune few inherent parameters while
leaving the majority of parameters unchanged in model adaptation.
This approach does not seek to change the internal structure of a
model, but to optimize a small number of internal parameters to solve
particular tasks. Generally, such specifications could be implemented
based on heuristics or training supervision.

Heuristic Specification Specification-based methods do not introduce
any new parameters in the model, but directly specify part of the pa-
rameters to be optimized. The idea is simple but very effective, only
finite-tuning 1/4 of the final layers of BERT and RoBERTa could prod-
uct 90% of the performance of full parameter fine-tuning.

BitFit only optimizes the bias term in the model while freezing all
the other parameters, and the model could stil reproduce over 95%
performance on several benchmarks. The biased term exists in both
attention mechanism and in the MLP feedforward layer. BitFit can
finetune only two bias components (the query and the middle of MLP
bias terms), amounting to half of the bias parameters in the model, and
only 0.04% of all the model parameters. The corresponding bias terms
are coloured in red, other bias terms are in blue.

large language models 44

Query in Attention : Q(x) = Wqx + bq (123)

K(x) = Wkx + bk (124)

V(x) = Wvx + bv (125)

MLP in Feedfoward : h2 = Dropout(W1 · h1 + b1) (126)

h3 = gLN1
⊙ (h2 + x)− µ

σ
+ bLN1 (127)

h4 = GELU(W2 · h3 + b2) (128)

h5 = Dropout(W3 · h4 + b3) (129)

out = gLN2
⊙ (h5 + h3)− µ

σ
+ bLN2 (130)

Empirical results in BitFit also show that even if we use a small ran-
dom set of parameters for tuning (which will obviously degrade the
performance), the model could still yield passable results on the GLUE
benchmark.

Unfortunately, the work only applies this trick to small-scale mod-
els, and there is no guarantee that randmly choosing some parameters
to be tuned would remain competitive for larger models. Another
valuable observation is that different bias terms may have different
functionalities during model adaption.

Learn the Specification Rather than manually or heuristically specify
which parameters to be updated, an alternative is to learn such speci-
fications. Diff pruning parameterized the finetuned model parameters
as the summation of the pretrained parameters and the difference vec-
tor as

θFT = θLM = δDi f f (131)

Hence, the key issue is to encourage the difference vector δDi f f to be as
sparse as possible. This work regularizes the vector by a differentiable
approximation to the L0-norm penalty as ||δDi f f ||0 to achieve the goal
of sparsity. Practically, because new parameters to be optimized are
introduced in the learning phase, Diff pruning takes up more GPU
memory than full parameter fine-tuning, which may establish barriers
in the application on large language models.

8.2 Adapter Tuning

The third idea we are going to explore is adapter tuning, which in-
serts small modules called adapters to a model. Adapters can be any
network architectures and can be placed anywhere in the model, but
often is to place a two-layer FFN with a bottleneck after each sublayer

large language models 45

(including both the MHSA sublayer and the FFN sublayer) within the
transformer.

h← h + f (hWdown)Wup (132)

where f is a nonlinear activation function. Some observations:

• Comparable results to full finetuning. Adapters achieve a mean
GLUE score of 80.0, compared to 80.4 achieved by full fine-tuning.

• The optimal adapter size varies per dataset - 256 is chosen for MNLI,
8 is chosen for RTE (smaller dataset).

• Restricting adapter size to 64, leads to a small decrease in accuracy
to 79.6.

Prefix Tuning Prefix tuning is another PEFT method, but different
from others, it has its roots in prompting, which will be discussed
in detail later. Freeze Transformer parameters and optimize (activa-
tions corresponding to) a prefix for each task (red prefix blocks). We
only need to store the prefix representations for each task, making
prefix-tuning modular and space-efficient.

8.3 LoRA (Low Rank Adaptation of Models)

large language models 46

9 Prompting and Zero-shot Inference

In a traditional supervised learning setting, an output y is generated
given the input x and the model parameters θ using the modeling
objective P(y|x; θ). However, for many tasks, the supervised data is
unavailable making the training process difficult/impossible. Prompt-
ing enables models to circumvent the training issue by learning an
LM that models the probability P(x; θ) of text x itself, and using this
probability to predict y, reducing or obviating the need for large su-
pervised datasets. In other words, prompting is non-invasive: it does
not introduce large amounts of additional parameters or require di-
rect inspection of a model’s representations. It can be thought of as a
lower bound on what the model “knows” and can be used to extract
information from LM.

To prompt an LM, it is important to map the input x to a prompt
x′. A prompting function fprompt(·) is applied to modify the input
text x into a prompt x′ = fprompt(x). Next, a template is defined that
consists of two slots: an input slot [X] for input x and an answer slot
[Z] for any generated answer z that may or may not be mapped into y
depending on the use case. Next, the highest-scoring ẑ that maximizes
the score of the LM is taken (z can take all possible values from the
vocabulary for generation tasks but can also be modified for controlled
classification/generation tasks).

A function ffill(x′, z) fills in the location [Z] in prompt x′ with the
potential answer z by searching over the set of all potential answers by
calculating the probability of their corresponding filled prompts using
a pre-trained LM P(·; θ).

ẑ = search
z∈Z

P(ffill(x′, z); θ). (133)

This search function could be an argmax search that searches for the
highest-scoring output or various sampling techniques that randomly
generate outputs following the probability distribution of the LM.

9.1 Prompt Engineering

Given a task, multiple prompts can work. However, finding the most
effective prompts is desired in order to unlock the full potential of
the LM. Prompt Engineering is the process of designing a prompting
function fprompt(x) that results in the most effective performance for
the given task.

Manual Prompts The straightforward yet somewhat effective technique
is to design the prompts for a given task manually. Since the number

large language models 47

of required prompts is usually very less, designing manual prompts
gives more control and flexibility to the user.

However, there are several problems with this approach: creating
and experimenting with these prompts is an art that takes time and
experience, especially for more complicated tasks like multi-step rea-
soning, and even experienced prompt designers may fail and find op-
timal prompts manually.

Automated Prompts Searching for automated prompts can be further
divided into discrete prompts or continuous prompts.

Discrete prompts (aka hard prompts), as the name suggests, auto-
matically searches for prompts in a discrete space (the prompts are
usually text strings corresponding to natural language). Various meth-
ods have been proposed in this line of work and we explore a few
approaches here.

Some initial work on automating discrete prompt design with mod-
erate success:

• Mine prompt candidates from a large corpus, search for strings in
a large text corpus that contains both training inputs x and outputs
y. Then, you identify the middle words or dependcy paths between
them.

• Use the middle words/paths as templates in the form of [X] middle

words [Z].
• Paraphrase approach translating the prompt into another language

and back, use a thesarus to replace words, train a neural prompt
rewriter designed/trained with the objective of improving the ac-
curacy of systems that use the prompt.

• Training a text generation model for generating prompts

Continuous prompts Prompt construction aims to enable an LM
to perform a specific task effectively, and it is not imperative for the
prompt to be limited to natural language that can be interpreted by
humans, therefore, some approaches focus on continuous prompts (aka.
soft prompts) that prompt the model directly in its embedding space.

One such approach is Prefix Tuning that prepends a sequence of
continuous task-specific vectors to the input while keeping the LM
parameters frozen. Mathematically, this consists of optimizing over
the following log-likelihood objective given a trainable prefix matrix
Mϕ and a fixed pre-trained LM parameterized by θ.

max
ϕ

log P(y|x; θ; ϕ) = max
ϕ

∑
yi

log P(yi|h<i; θ; ϕ) (134)

large language models 48

In Eq. 134, h<i = [h(1)<i ; · · · ; h(n)<i] is the concatenation of all neural net-
work layers at time step i. It is copied from Mϕ directly if the cor-
responding time step is within the prefix (hi is Mϕ[i]), otherwise it is
computed using the pre-trained LM.

9.2 Advanced Prompting

Zero- and Few-Short Inference Prompting methods can often be used
without any explicit training of the language model (LM) for the down-
stream task. One can take an LM that has been trained to predict the
probability of text P(x) and apply it as-is to fill the cloze or prefix
prompts that define the task. This is traditionally referred to as the
zero-shot setting, as there is no training data available for the task of
interest.

However, in the scenario where a limited number of labeled exam-
ples are available or can be easily annotated, it is possible to augment
the prompt to include this additional information. This setting is re-
ferred to as few-shot inference and consists of including a small collec-
tion of input-out exemplars. These exemplars are input-output pairs
that serve as demonstrations of the behavior that one would like the
LM to emulate. By using these pairs as a guide, the large LMs can
learn to carry out the desired task. This simple idea was shown to
for example, we can augment the standard prompt “France’s capital is
[X] .” by prepending a few examples such as “Great Britain’s capital
is London . Germany’s capital is Berlin . France’s capital is [X]”. Note
that few-shot inference does not involve any parameter updates.

Chain of Thought Prompting Multiple studies investigating the reason-
ing capabilities of large LMs, highlighted how eliciting the model to
produce a step-by-step solution of a problem can lead to a more accu-
rate final answer. Combining this idea with the intuition of including
a set of demonstrations in the prompt, introduced the concept of chain
of thought (CoT) prompting. Given a question, a chain of thought is a
coherent sequence of reasoning steps that leads to a final answer. One
of the intuitions is that by allowing the model to generate a step-by-
step solution, we let the model apply computation proportional to the
problem difficulty level (more tokens are generated for problems with
more steps).

Problem Decomposition Chain-of-thought prompting has shown im-
pressive results on a variety of natural language reasoning tasks. How-
ever, its effectiveness decreases when a given task is more challenging
than the examples provided in the prompts. To address this issue,
problem decomposition has been proposed both for training and as

large language models 49

a prompting strategy. In this method, a complex problem is broken
down into smaller, more manageable sub-problems that are tackled
one at a time. The solution to each subproblem helps to solve the next,
allowing for a sequential problem-solving process. An example of this
prompting technique, often referred to as Least to Most prompting,

Self-consistency Greedy decoding (setting with temperature T = 0)
can be considered the most naive decoding strategy, where an LM is
given a prompt with or without in-context examples and an output is
generated. However, this limits the creativity of the LM by generat-
ing only one greedy sample per input. An extension to the decoding
strategy called self-consistency, which provides an alternative to sim-
ple greedy decoding by generating a variety of outputs (with T > 0)
instead of just following the most likely one.

Taking an example of the task of solving reasoning problems, the
most consistent answer is defined by sampling n candidate pairs of
reasoning paths and their corresponding final numerical answer (ri, ai)

and marginalizing over ri by taking a majority vote over ai:

arg max
a

n

∑
i=1

1(ai = a). (135)

The same idea could be used for other tasks by taking the most con-
sistent answer over the range of sampled outputs. The self-consistency
approach argues that a task, say a reasoning task, often allows for
several different lines of thought that converge on the same correct
solution. In this case, the most frequently generated solution is more
likely to be the correct one.

large language models 50

10 Vision Language Models

Vision-and-language tasks, by definition, should include both vision
and language modalities in their inputs and outputs. VL tasks can
be grouped into three categories: Image-Text Tasks, CV Tasks as VL
Tasks, and Video-Text Tasks.

10.1 Components of a Vision Language Model

Text Encoder VLMs first segment the input sentence into a sequence
of subwords and then insert two special tokens at the beginning and
the end of the sentence to generate the input text sequence. After we
obtain the text embeddings, existing works either feed them directly to
the multimodal fusion module, or to several text-specific layers before
the fusion. For the former, the fusion module is typically initialized
with BERT, and the role of text encoding and multimodal fusion is
therefore entangled and absorbed in a single BERT model, and in this
case, we consider text encoder as the word embedding layer.

In a nutshell, no matter what text encoder is used, the input text is
represented as a set of feature vectors w = {w1, · · · , wN}

Vision Encoder Then, we have a vision encoder. There are three types
there are three types of vision encodes, which we will go into more
detail.

• Object Detectors (OD). The most widely used object detector for
VL research is the Faster R-CNN pre-trained on the Visual Genome
(VG) datasat as in BUTD. Start with a pretrained Object detector e.g.
R-CNN or Faster R-CNN. Use visual features as well as location
features [x1, y1, x2, y2, w, h, w × h] (normalized coordinates, width,
height and area). Both visual and location features are combined,
e.g., fed through a fully-connected layer.

• Convolutional Neural Networks. Shift invariant architecture for
image representation. Convolution + RELU, Convolution layer puts
the input image through a set of convolutional filters, each of which
activates certain features in the image. RELU, a non-linear activa-
tion function - allows for effective training by mapping negative
values to zero and maintaining positive values. Pooling - simplifies
the output by performing a down-sampling.

• Vision Transformers. Create image tokens: Split image into image
patches, map them into vectors and linearly project them to patch
embeddings. [CLS]: Add a learnable special token [CLS] embed-
ding to the sequence.

In a nutshell, no matter what vision encoder is used, the input im-

large language models 51

age is represented as a set of feature vectors v = {v1, · · · , vM}. VLMs
can be categorized into non end-to-end models, which use an OD
model to get vision features for the model, and end-to-end models
that directly take raw images as input.

Multimodal Fusion For dual encoders like CLIP and ALIGN, fusion
is essentially computing the similarity between representation in the
two modalities, which is typically performed via a dot-product be-
tween two global image and text feature vectors. For fusion encoder,
it takes both v = {v1, · · · , vM} and w = {w1, · · · , wN} as input,
and learns contextualized multimodal representations denoted as ṽ =

{ṽ1, · · · , ṽM} and w̃ = {w̃1, · · · , w̃N}. There are mainly two types of
fusion modules, namely, merged attention and co-attention.

• In a merged attention module, the text and visual features are sim-
ply concatenated together, and then fed into a single Transformer
block. This design has been used in many previous works, such
as VisualBERT, Unicoder-VL, VL-BERT, UNITER, OSCAR, VinVL,
ViLT, GIT.

• In a co-attention module, on the other hand, the text and visual fea-
tures are fed into different Transformer blocks independently, and
techniques such as cross-attention are used to enable cross-modal
interaction. Most ViT-based models adopts co-attention module
since the image sequence can be very long and doing merged at-
tention can be very computationally inefficient.

10.2 Vision-Language Models: Pre-training Objectives

Masked Language Modeling (MLM). The MLM objective is first intro-
duced in language model pre-training. In VLP, MLM with image-text
pairs has also proven to be useful. In MLM, given an image-text pair,
we randomly mask out the input words with probability of 15%, and
replace the masked ones w̃m with special token [MASK].7 The goal is to 7 Following BERT, this 15% is typically

decomposed into 10% random words,
10% unchanged, and 80% [MASK].

predict these masked tokens based on their surrounding words w̃\m
and the paired image ṽ, by minimizing the negative log-likelihood:

LMLM(θ) = −E(w̃,ṽ)∼D log Pθ(w̃m|w̃\m, ṽ) , (136)

where θ denotes the trainable parameters. Each pair (w̃, ṽ) is sampled
from the whole training set D. There are several MLM variants used
in VLP.

Image-Text Matching (ITM). In ITM, given a batch of matched or mis-
matched image-caption pairs, the model needs to identify which im-
ages and captions correspond to each other. Most VLP models treat
image-text matching as a binary classification problem. Specifically, a

large language models 52

special token (i.e., [CLS]) is appended at the beginning of the input
sentence to learn a global cross-modal representation. We then feed
the model with either a matched or mismatched image-caption pair
⟨ṽ, w̃⟩ with equal probability, and a classifier is added on top of the
[CLS] token to predict a binary label y, indicating whether the sam-
pled image-caption pair is matched. Specifically, denote the output
score as sθ(w̃, ṽ), We apply the binary cross-entropy loss for optimiza-
tion:

LITM(θ) = −E(w̃,ṽ)∼D[y log sθ(w̃, ṽ) + (1− y) log(1− sθ(w̃, ṽ))]) .
(137)

Besides randomly sampling a negative image-text pair, harder nega-
tive pairs can also be mined from an image-text contrastive loss intro-
duced below, which has been shown to be effective in improving the
downstream performance.

Image-Text Contrastive Learning (ITC). Specifically, given a batch of N
image-text pairs, ITC aims to predict the N matched pairs from all the
N2 possible image-text pairs. With a little bit abuse of notation, let
{vi}N

i=1 and {wi}N
i=1 denote respectively the normalized image vectors

and text vectors in a training batch. To compute image-to-text and
text-to-image similarities, we have:

si2t
i,j = v⊤i wj, st2i

i,j = w⊤i vj , (138)

Li2t
ITC(θ) = −

1
N

N

∑
i=1

log
exp(si2t

i,i /σ)

∑N
j=1 exp(si2t

i,j /σ)
, (139)

Lt2i
ITC(θ) = −

1
N

N

∑
i=1

log
exp(st2i

i,i /σ)

∑N
j=1 exp(st2i

i,j /σ)
, (140)

Masked Image Modeling (MIM). Similar to the MLM objective, researchers
have studied various masked image modeling (MIM) tasks for pre-
training. Specifically, the model is trained to reconstruct the masked
patches or regions ṽm given the remaining visible patches or regions
ṽ\m and all the words w̃ as

LMIM(θ) = E(w̃,ṽ)∼DPθ(ṽm|ṽ\m, w̃) . (141)

large language models 53

Part III

Security

	I Theory
	Probabilistic Foundations
	Classical Language Models (Finite-State Language Models)
	Recurrent Neural Language Models
	Transformers
	Tokenization
	Generation from Language Models

	II Applications
	Transfer Learning
	Parameter Efficient Finetuning
	Prompting and Zero-shot Inference
	Vision Language Models

	III Security

