
Machine Perception
Paul He

June 4, 2024

Notes are based on Machine Perception course notes and lectures at ETH
Zürich for the Spring 2024 semester. Some sections may be very similar to
lecture notes and the original papers. In addition, I included new concepts
introduced in the weekly worksheets that will be relevant for the exam. It also
contains my derivation to the exercises. These are simply my notes used for
studying the course. I do not guarantee the correctness of this set of notes,
please feel free to point out if there are typos or mistakes.

machine perception ii

Contents

I Foundations of Deep Learning 1

1 Neural Networks 1

1.1 Multi-layer perceptron 1

1.2 Loss Functions 1

1.3 Approximation capabilities of Neural Networks 3

2 Training Neural Networks 4

2.1 Regularization 4

2.2 Ensemble Methods 5

2.3 Data Normalization 6

2.4 Optimization Algorithms 7

3 Convolutional Neural Network 8

3.1 Convolution Operation 8

3.2 Convolutonal Neural Network 10

3.3 Summary of Parameters and Dimensions 13

3.4 Fully Convolutional Neural Network 13

4 Recurrent Neural Network 15

4.1 Vanilla Recurrent Neural Network 15

4.2 Backpropagation Through Time 15

4.3 LSTM 17

II Generative Models 20

5 Autoencoders 20

5.1 Linear Autoencoders: the PCA projection 20

5.2 Non-Linear Autoencoders 21

5.3 Autoencoder Limitations 22

5.4 Variational Autoencoder 22

5.5 Monte Carlo Gradient Estimator 25

5.6 Hierarchical Latent Variable Models 26

5.7 β-VAE 27

6 Autoregressive models 29

6.1 Learning distribution of natural data 29

6.2 Fully Visible Sigmoid Belief Network 30

6.3 Neural Autoregressive Density Estimator (NADE) 31

6.4 Masked Autoencoder Distribution Estimation (MADE) 31

6.5 Pixel RNN 32

6.6 Pixel CNN 32

machine perception iii

6.7 WaveNet: autoregressive generative model for audio data 32

6.8 Variational RNNs 33

6.9 Self-Attention and Transformers 34

7 Normalizing Flows and Invertible Neural Networks 37

7.1 Change of Variables 37

7.2 Normalizing Flows 38

7.3 Planar Normalizing Flow 39

7.4 Conditional Coupling Normalizing Flow 40

8 Generative Adversarial Networks 42

8.1 GAN Objective 42

8.2 Convergence of training algorithm 45

8.3 Training 45

9 Diffusion Models 47

9.1 Diffusion Step 47

9.2 Denoising Step 48

9.3 ELBO for Diffusion Models 50

9.4 Training 52

9.5 Guidence 52

III Deep Learning for Computer Vision 54

10 Implicit Surfaces and Neural Radiance Fields 54

10.1 Neural Implicit Surface Representation 54

10.2 Implementation of Neural Implicit Surface Representations 55

10.3 NEural Radiance Field (NERF) 58

10.4 Gaussian Splatting 60

11 Parametric Human Body Models 62

11.1 Body Modeling 62

11.2 Feature Representation Learning 63

11.3 3D Human Pose Representation and Estimation 63

IV Reinforcement Learning 66

12 Reinforcement Learning 66

12.1 Markov Decision Processes 66

12.2 Dynamic Programming 68

12.3 Monte Carlo Methods 69

12.4 Temporal Difference Learning 69

13 Deep Reinforcement Learning 72

13.1 Deep Q-Learning 72

machine perception iv

13.2 Policy Search Methods 72

machine perception 1

Part I

Foundations of Deep Learning

1 Neural Networks

1.1 Multi-layer perceptron

Among the early models, we find the Perceptron. The classification of
a single point is defined as follows

ŷ = f (x, w) = I{w⊤x + b > 0} (1)

The learning algorithm then iteratively updates the weights for a
data point that was classified incorrectly

wk+1 ← wk + η (yi − ŷi)︸ ︷︷ ︸
residual

xi, (2)

where η is the learning rate. However, with a single perceptron it
could not solve the XOR problem. This can be fixed by adding hidden
layers.

ŷ = σ(Wkσ(Wk−1 · · · σ(W1x))). (3)

Which becomes a multi-layer perceptron (MLP). We call the param-
eters θ = {W1, . . . , Wk, b1, . . . , bk} and estimate them using an opti-
mization algorithm such as gradient descent, which we call is "learn-
ing" and we compute the gradient by backpropagation.

1.2 Loss Functions

In order to learn, we need to define a loss function that needs to be
optimized. The first technique we are going to use to define a suitable
loss function is Maximum Likelihood Estimation.

Suppose we are given a dataset D = {(xi, yi}N
i=1 with inputs xi,

yi and a parametric family of probability distributions pmodel(y|X, Θ)

over the output space, indexed by Θ. The dataset is assumed to be
drawn from an underlying probability distribution pdata which I’ll re-
fer to as pd, which is not accessible to us except though the samples in
D, which we assume to be i.i.d.. I’ll refer pmodel as pm.

When defining the loss function, we will always follow these three
main steps:

machine perception 2

1. Write down the parametric probability distribution of the mode
pm(y|X, Θ)

2. Decompose that probability distribution into per sample prob-
ability pm(yi|xi, Θ)

3. Convert everything in log scale and minimize the Negative Log
Likelihood (NLLK)

More formally, the conditional maximum likelihood estimator for
Θ is given by

Θ∗MLE = argmax pm(y|X, Θ) (4)

= argmax
Θ

N

∏
i=1

pm(yi|xi, Θ) (5)

= argmax
Θ

N

∑
i=1

log pm(yi|xi, Θ) (6)

The negative log-likelihood (NLLK) is the loss function that we will
use to optimize out networks. We now see some examples for different
types of pm.

Gaussian Let X ∼ N (µ, σ2). Then, our model is a 1-dimensional
Gaussian distribution and we can model our system using a Gaussian
probability density function with µ and σ as our parameters.

In order to minimize NLLK, we can adjust the values of µ and σ

such that the Gaussian curve places more probability mass on areas
where we expect to see data and less probability mass on areas where
we do not expect to see data.

Bernoulli Suppose we are given a dataset D = {(xi, yi}N
i=1 with yi ∈

{0, 1} i.e. we are performing binary classification. Now, a Gaussian
would not be a valid pm anymore. Instead we will model the output
variable ŷi using a Bernoulli distribution ŷi ∼ Bern(σ(θ⊤xi)) The pa-
rameter of this Bernoulli distribution derives from the model used for
binary classification. The sigmoid can be interpreted as a probability
distribution as its always positive and in the interval (0, 1). Following
the steps

pm(y|X, Θ) =
N

∏
i=1

p(yi|xi, Θ) (7)

=
N

∏
i=1

[1
1 + exp{−ϕ}

]yi
[
1− 1

1 + exp{−ϕ}

]1−yi
(8)

machine perception 3

where we denote ϕ = Θ⊤xi. Hence, the NLLK will be our loss function

L = − log pm(y|X, Θ) (9)

= − 1
N

N

∑
i=1

yi log(πi) + (1− yi) log(1− πi) (10)

1.3 Approximation capabilities of Neural Networks

A Multi-Layer Perceptron (MLP) that solely relies on linear activation
functions is mathematically equivalent to a single unit network with a
linear activation, which is insufficient for effectively learning numer-
ous types of functions. Therefore, the inclusion of non-linear activation
functions between layers is crucial to enable the network to perform
effectively.

In particular, the approximation capabilities of an MLP with a non-
linear activation function are given by the following theorem.

Universal Approximation Theorem. Let σ : R 7→ R be a non-
constant, bounded and continuous activation function. Let Im de-
note the m-dimensional unit hypercube [0, 1]m and the space of
real-valued functions on Im denoted by C(Im). Then, a continuous
function f ∈ C(Im) can be approximated given any ϵ > 0, N ∈ Z,
real constants vi, bi ∈ R and real vectors wi ∈ Rm. ∀i ∈ {1, . . . , N}
we have

f (x) ≈ g(x) =
N

∑
i=1

viσ(w⊤i x + bi) (11)

and |g(x)− f (x)| < ϵ, ∀x ∈ Im

In easy terms, the theorem says that: A feed-forward neural network
with a single hidden layer and continuous non-linear activation function can
approximate any continuous function with arbitrary precision.

machine perception 4

2 Training Neural Networks

2.1 Regularization

Regularization is any modification to a learning algorithm intended to
improve its generalization error, but not its training error.

In the idea scenario, model family being trained includes the data
generating process, but also many other possible generating processes.
Regularization pushes or restricts the solution space towards the true
generating process.

Parameter Norm Penalties The idea is to add a penalty term to the loss
function that depends on the weights of the network, usually specific
norm of the weights. Results depend on the norm, different norms
will lead to different preferences.

L̃(θ, X, y) = L(θ; X, y) + λΩ(θ) (12)

Usually the penalty term does not include the bias parameters.

L2 Regularization
We set Ω(θ) = 1

2∥θ∥2
2 such that

∇L̃(θ) = ∇L(θ) + λθ (13)

and we get

θ ← θ − α∇L̃(θ) = (1− αλ)︸ ︷︷ ︸
weight decay

θ − α∇L(θ)︸ ︷︷ ︸
Parameter Update

(14)

L2 regularization tends to shrink the coefficients towards zero but
rarely sets them exactly to zero. This results in models where all
features are retained but with smaller weights.

L1 Regularization
We set Ω(θ) = ∥θ∥1 = ∑i |θi| so that

∇L̃(θ) = ∇L(θ) + λsign(θ) (15)

L1 prefers sparse solutions, it is less used than L2 regularization
in Neural Networks. L1 regularization can shrink some coeffi-
cients to exactly zero, effectively performing feature selection by
excluding some features entirely.

Penalties can cause the optimization to get stuck in local minima
with small weight values. From a Maximum a Posteriori (MAP) Bayesian

machine perception 5

perspective, it is equivalent to specifying a prior distribution on the
weights’ values. It is also equivalent to imposing (implicit) constraints
on the weights i.e. restricting the solution space.

2.2 Ensemble Methods

Ensemble methods use finite amount of different machine learning
models to obtain better performance than any one of them alone.

We can train different model classes (Linear Regression, Decision
Tree, Neural Network) on the same data and then aggregate the pre-
dictions.

We can also train the same model class on different data (sampled
from the original dataset) and aggregate the predictions.

Bagging

1. We first create k different bootstraps from the training set with
replacement.

2. For each bootstrap we train a classifier, which gives us k differ-
ent classifiers.

3. Our final prediction is the combination of the k different classi-
fiers.

Dropout
Dropout is a computationally inexpensive technique to regularize
a broad family of models. In practice, it consists of ignoring a sub-
set of neurons (chosen at random) during each training iteration.
It is regarded as a ensemble technique because it is equivalent to
creating an ensemble of all sub-networks that can be formed by
removing non-output units from an underlying base unit.

At training stage, if we let yl be the input to the (l+1)th layer
in the network, f and activation function and θl , bl be the weights
and bias parameters. Then a feed-forward with dropout is first
sampling r(l)j ∼ Bern(p), then compute ỹl = r[l] ⊙ yl which leads
to zl+1 = θl+1ỹl + b and yl+1 = f (zl+1).

At the test stage, we can:

1. Approximate with sampling i.e. do limited number of forward
passes in the network where dropout behaves same as at train-
ing time and take the average of the result.

2. (Preferred) weight scaling inference rule. The idea is the ex-
pected total input to any unit at test time equls the expected

machine perception 6

total input at training time, which approximates the true geo-
metric mean of the ensemble. Exactly on for model with non-
linearities, but works well in practice.

2.3 Data Normalization

Scales matter:

• Scale in the input: large input values could result in large weight
values which make the predictions unstable.

• Scale in the output: a target variable with a large spread in its values
can make the training process unstable.

Let X be our input data and x(i) be a particular data point. Then, the
mean and the standard deviation of the data are µ = 1

n ∑n
i=1 x(i) and

σ = 1
n−1 ∑n

i=1(x(i) − µ)2. So the normalized is XN = X−µ
σ . During

testing, use the same mean and standard deviation.

Batch Normalization Given some mini-batch of intermediate activa-
tions z1, z2, . . . zn, we can compute µ = 1

n ∑n
i=1 zi, σ2 = 1

n−1 ∑n
i=1(zi −

µ)2 and znorm
i = zi−µ√

ϵ+σ2 and hence z̃i = γznorm
i + β

The bias term in a linear (and convolutional) layer becomes re-
dundant if you use batch normalization after it. Batch normalization
makes the weights in deeper layers more robust to changes to weights
in the shallower layers of the network. Each mini-batch is scaled by
the mean/variance computed on just that mini batch. This adds some
inherent noise within that mini-batch (similar to dropout) and has a
slight regularization effect.

During test time, µ, σ2 are estimated using exponentially weighted
average across mini-batches i.e. keep running average during training
time, and use that during test time.

Batch Normalization tries to solve internal covariate shift:

• Training deep neural networks is complicated by the fact that the
distribution of each layer’s inputs changes during training, as the
parameters of the previous layers

• The gradient tells us how to update each parameter, under the as-
sumption that other layers do not change. In practice, we update all
of the layers simultaneously.

However, recently research has shown it my not even be reducing in-
ternal covariate shift, instead, it fundamentally impacts the training
process by making the optimization landscape significantly smoother,

machine perception 7

thus leading to a more predictive and stable behaviour of the gradi-
ents.

2.4 Optimization Algorithms

Keep in mind, optimization and learning are two different problems.
In learning, we optimize an objective function J in the hope that doing
so will improve some performance measure P that is typically inacces-
sible.

Gradient Descent θ = θ − η · ∇θ J(θ) Follow the direction of the slop
of the surface created by the objective function downhill. The learning
rate η determines the size of the steps taken.

Stochastic Gradient Descent (SGD) θ = θ − η · ∇θ J(θ; x(i), y(i)) Unbi-
ased estimate of the true gradient, high variance, high efficiency per
iterations (n times cheaper than GD). Enables jumping to new and
potentially better local minima. Risk of overshooting.

Near a smoothened minimum, the SGD step is dominated by stochas-
tic fluctuations. In practice, it is necessary to decrease the learning rate
of time for SGD to converge.

Mini-batch Gradient Descent Sample a minibatch of m examples from
the training set. Reduces the variance of the gradient estimate which
leads to more stable convergence, and allows parallelization over up
to m processors.

Polyak’s Momentum Accelerate gradient in the face of: high curvature
(poor conditioning of Hessian matrix), small but consistent gradients,

noisy gradients. v ← αv − ε∇θ

(
1
m ∑m

i=1 L(f (x(i); θ), y(i))

)
and up-

date θ ← θ+ v. The velocity term v accumulates successive gradient
elements. The larger α is relative to ε, the more previous gradients
affect the current direction. The size of the step depends on how large
and how aligned a sequence of the gradient is. The step size is largest
when many successive gradients point in the same direction. However,
Polyak’s momentum has been proved to not converge in the very sim-
ple case of a strongly-convex and smooth function for carefully chosen
α and ε.

Nesterov’s Momentum Fixes Polyak’s momentum’s limitation by adding

a correlation factor. Now, v← αv− ε∇θ

(
1
m ∑m

i=1 L(f (x(i); θ+ αv), y(i))

)
and update θ← θ+ v.

machine perception 8

3 Convolutional Neural Network

Many tasks in the field of computer vision can be modelled with Con-
volutional Neural Network (CNN). Classification, Classification and Lo-
calization, Object Detection, Instance Segmentation, 3D Body Pose Estima-
tion, Eye Gaze Estimation, Dynamic Gesture Recognition.

HMAX Model The HMAX model is a biologically motivated archi-
tecture for computer vision that incorporates these neuroscientific in-
sights. It aligns closely with physiological evidence, particularly in
terms of existence and operation of simple (S) and complex (C) cells
at different levels of the visual hierarchy. S cells are tuned to specific
stimuli and typically have small receptive fields. Given an input x, the
response y of a simple cell is computed as

y = exp

(
− 1

2σ2

nsk

∑
j=1

(wj − x)2

)
(16)

C cells combine the outputs from multiple simple cells to increase in-
variance and receptive field size. The output of a complex cell is

y = max
j=1,...nck

(xj) (17)

Research has shown that through many iterations of these operations,
complex objects can be constructed from low-level features.

3.1 Convolution Operation

Convolutions as linear, shift-equivariant transforms In deep neural net-
works, our goal is to transform a given input signal f into a more
informative representation using an operator T. Among the various
operators, convolutions can express any linear, shift equivariant trans-
form.

A transform T is linear if:

T(αu + βv) = T(αu) + T(βv) (18)

A transform T is invariant to f if:

T(f (u)) = T(u) (19)

Invariance is a property we want to exploit in classification tasks.
If we want to classify cats in an image and we shift every pixel by
one unit. The image should still represent a cat. In other words,
the classifier f should be invariant to the shift T of one pixel.

machine perception 9

A transform T is equivariant to f if:

T(f (u)) = f (T(u)) (20)

We desire equivariance for tasks such as edge detection. When
there is an edge present in the input image and we apply the
function f to shift the image content, we want the edge detector
to also shift its response (the position of the edge) along with the
function f .

Linear Filters to Convolution Linear operations can be represented in
the form of

I′(i, j) =
k

∑
m=−k

k

∑
n=−k

K(m, n)I(i + m, j + n) (21)

where I represents the input image, I′ is the output of the operation,
K is the kernel of the operation, and (2k + 1) × (2k + 1) represents
the dimension of the filter. Note that K does not depend on (i, j), the
position of the current pixel image.

In a linear transform, the value of the kernel K, which is applied to
each point of the image depends on both the position and neighboring
point (m, n) w.r.t (i, j). This dependency on the specific position (i, j)
makes the linear transform non-shift-invariant. To achieve shift invari-
ance, we need to remove the dependency on the position (i, j), which
can be done by considering kernels that are constant over the image.
From now on, the kernel K will represent a constant matrix K(m, n).

Correlation Correlation is a particular case of shift-invariant linear fil-
tering. In correlation, a fixed spatial pattern is shifted over the im-
age, and the response is recorded as the pattern is applied to different
patches. The response is computed by multiplying the pattern with
the under-lighted portion of the image. If the elements are similar,
the outputs will be high, whereas dissimilar elements will yield low
outputs.

The ability to perform pattern matching1 makes the correlation op- 1 finding a pattern when the correlation
between the kernel and input pixel is
high [object detection]

eration particularly useful in object detection.

For instance, given a 3× 3 kernel K and an input image I, the output
of the correlation operation for each cell (i, j) can be computed as:

I′(i, j) = c11 I(i− 1, j− 1) + c12 I(i− 1, j)

+ c13(i− 1, j + 1) + c21 I(i, j− 1) + c22 I(i, j) + c23 I(i, j− 1)

+ c31 I(i + 1, j− 1) + c32 I(i + 1, j) + c33 I(i + 1, j + 1) (22)

machine perception 10

where (i, j) is the center of the image I, and (i− 1, j− 1) is the top
left corner of the 3× 3 patch of the image.

So in general, for any 2k× 2k kernel, the correlation operation can
be described as:

I′(i, j) =
k

∑
m=−k

k

∑
n=−k

K(m, n)I(i + m, j + n) (23)

Convolution vs. Correlation
For any 2k× 2k kernel, the correlation operation can be described
as:

I′(i, j) = (I ∗ K)(i, j)
k

∑
m=−k

k

∑
n=−k

I(i−m, j− n)K(m, n) (24)

where ∗ denotes the convolution operation. This is basically cor-
relation but with the kernel flipped. However, the difference is that
convolution is commutative, while correlation is not. This means the
above equation is equivalent to

I′(i, j) = (K ∗ I)(i, j)
k

∑
m=−k

k

∑
n=−k

K(m, n)I(i−m, j− n) (25)

This formula is preferred for implementation in ML libraries such as
PyTorch as it allows for a smaller variation in the range of valid (m, n)
values. The commutative property is the primary reason it was com-
monly used instead of correlation. Convolution and correlation be-
come equivalent when K(m, n) = K(−m,−n).

Discrete convolution as matrix multiplication

I ∗ K =

k1 0 . . . 0
k2 k1

k3 k2
...

... k3

0
... . . . km

I1

I2
...
...
In

(26)

3.2 Convolutonal Neural Network

A CNN is composed of a sequence of convolutional layers interspersed
with activation function and pooling layers, followed by a final dense
layer (also called fully connected). The dense layer aggregates the fea-
tures extracted by the convolutional layers and produces the final out-
put of the network.

machine perception 11

Convolution Layer In CNNs, the first step of a convolutional layer in-
volves applying convolution to an input image. This is achieved by
convolving a kernel2 with the entire image. In practice, this involves 2 referred to as a filter in deep learning

sliding the kernel over the image spatially and computing dot prod-
ucts.

Note that filters must extend the full depth of the input volume.
For example, if we have an RGB image (3 colour channels), we would
apply a k× k× 3 filter to it.

When taking the dot product between the filter and a small 5× 5× 3
chunk of the image, resulting in a 75-dimensional dot product + bias,
the output is a single number.

Forward Pass
Let z[l−1]

i,j be the output of the (l − 1)-th layer at position (i, j),

let w[l]
n,m be the weight of the filter in the position (m, n), and let

b be the bias parameter (every convolutional layer has one bias
parameter per filter). We can write the output of the l-th layer as
(ignoring activation functions for now):

z[l]i,j = W [l] · z[l−1]+ b = ∑
m

∑
n

w[l](m, n)z[l−1](i−m, j− n)+ b (27)

Backward Pass

δ
[l−1]
i,j =

∂L
∂z[l−1]

i,j

(28)

= ∑
i′

∑
j′

∂L
∂z[l]i′ ,j′

∂z[l]i′ ,j′

∂z[l−1]
i,j

(29)

= ∑
i′

∑
j′

δ
[l]
i′ ,j′

∂ ∑m ∑n w[l](m, n)z[l−1](i′ −m, j′ − n) + b

∂z[l−1]
i,j

(30)

= ∑
i′

∑
j′

δ
[l]
i′ ,j′w

[l](m, n) (31)

= δ[l] ∗ ROT180(W [l]) (32)

Notice this is just using the definition of forward pass and on the
last step the double sum only has a non-zero gradient w.r.t. z[l−1]

i,j
when i′ −m = i and j′ − n = j.

machine perception 12

Parameter Update
Is derived in a similar way as the backward pass

∂L
∂w[l](m, n)

= ∑
i

∑ j
∂L

∂z[l]i,j

∂z[l]i,j

∂w[l]
m,n

(33)

= ∑
i

∑
j

δ
[l]
i,j

∂z[l]i,j

∂w[l]
m,n

(34)

= ∑
i

∑
j

δ
[l]
i,j

∂ ∑m ∑n w[l](m, n)z[l−1](i−m, j− n) + b

∂w[l]
m,n

(35)

= ∑
i′

∑
j′

δ
[l]
i′ ,j′z

[l−1](i−m, j− n) (36)

= δ[l] ∗ ROT180(Z[l−1]) (37)

Pooling Layer The pooling layer substitutes the output of the network
at a specific position with a condensed representation of the adjacent
outputs, typically in the form of a statistical summary. This operation
reduces the size of the representations and makes them more manage-
able. Note that the pooling operation is applied independently to each
activation map.

One of the possible pooling operations is max pooling, which sim-
ply outputs the maximum value from the input within the given re-
gion. The forward pass is

z[l]i,j = max
{

z[l−1]
i

}
(38)

Hence, the backward pass is

δ[l−1] = {δ[l]}i∗ ,j∗ (39)

since
∂z(l)

∂z(l−1)
i

= I{i = i∗} (40)

where (i∗, j∗) correspond to the pixel with the maximum value. Note
that the max-polling layer has no learnable parameter, its just a prop-
agation of the error and it is not used for weight update.

Dense Layer The dense layer, also referred to as a fully connected
layer, complements the role of convolutional and pooling layers in cap-
turing local features and reducing spatial dimensions.

Its crucial function lies in aggregating the extracted features and
generating the final output of the network. In this layer, each neuron

machine perception 13

performs a weighted sum of all its inputs and applies a non-linear acti-
vation function. By learning complex relationships among the features
extracted by preceding layers, the dense layer enables the network to
make predictions based on these learned representations.

3.3 Summary of Parameters and Dimensions

Let I be the length of the input length, F be the filter length, P be the
amount of zero padding, S be the striding and the output O is:

O =
I − F + PSTART + PEND

S
+ 1 (41)

usually we round down. Usually PSTART = PEND
∆
= P.

Input Dim Output Dim Parameters

Convolution I × I × C O×O× K (F× F× C + 1)× K
Pooling I × I × C O×O× C ZERO
FCNN Nin Nout (Nin + 1)× Nout

Table 1. Summary of Operations

3.4 Fully Convolutional Neural Network

Semantic Segmentation Semantic Segmentation is a critical task in com-
puter vision that involves assigning a semantic class to each pixel in
an image.3 3 Traditional image classification outputs

a single class for the entire image, se-
mantic segmentation classify each pixel
individually.

The easiest approach is to classify each pixel individually by ex-
tracting features from a patch centered on it. However, this method is
inefficient and redundant for processing large images. Instead, practi-
tioners adopt a pipeline that involves using the entire image as input
to a CNN. The final fully connected layer, typically used for image
classification, is removed, and the resulting feature maps are used as
segmentation predictions. Due to convolutions and max-pool opera-
tions, these predictions have lower resolution than the original image.
To obtain the same resolution as the input image, we could keep the
same dimensions by using appropriate padding in the convolutions
and avoiding pooling layers. However, this method can be computa-
tionally expensive.

In practice, the most common approach is to downsample features
obtained using convolution and pooling layers and upsample them
again. By applying convolution to a smaller object, this method is
more computationally efficient while producing output with the same
resolution as the input. Downsampling can be achieved with pooling
and strided convolution, and we will explore the various techniques
for upsampling.

machine perception 14

Fixed Upsampling techniques Nearest neighbour, bed of nails and max
unpooling.

• Nearest neighbour upsampling involves upsampling features by
copying the same value into all corresponding pixels at a higher
resolution.

• Best of nails upsampling involves padding zero to the neighbour
values.

• Max unpooling uses zero padding as in bed of nails, but it remem-
bers the original position of the maximum value before the corre-
sponding max-pooling in the downsampling phase. This informa-
tion is then used to place each element back in the correct position.

Learnable Upsampling An example is transposed convolutions, they
make use of learning.

Figure 1. Operation of the transposed
convolution on a 2× 2 input and kernel.

In practice, given a low-resolution image, we learn a kernel (e.g.,
2× 2) that is used to produce all the terms whose sum will be the final
output. Each term is obtained by multiplying all the elements of the
kernel by the value of one single input pixel and then inserting the
result in the correct position of a matrix of the same size as the output.
Note that each term of the sum is a sparse matrix, potentially with
non-zero terms only in a number of pixels equal to the kernel size.
Figure 1 provides a visualization of this process.

U-Net U-Net is a popular fully convolutional neural network (FCNN)
architecture that has been widely used for semantic segmentation tasks.
The main idea behind U-Net is to combine global and local feature
maps by copying corresponding tensors from earlier stages in each
upsampling stage. This allows the network to capture both local4 and 4 Residual connections help to mantain

local features as images are not com-
pletely downsampled at every stage.

global context, leading to more accurate semantic segmentation re-
sults.

machine perception 15

4 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of neural network that
can process sequential data. Unlike traditional feedforward neural
networks, which take fixed-length inputs, RNNs can take inputs of
variable length and maintain an internal memory of the past inputs
that it has seen. At their core, RNNs are a type of dynamical system
which is a mathematical concept to describe the behavior of a system
over time based on its current state. It context of RNNs, the hidden
state of each timestep can be thought of as representation of the current
state of the system and the transition function that updates the state
can be thought of as the set of rules that govern the behavior of the
system over time.

4.1 Vanilla Recurrent Neural Network

The vanilla version of a Recurrent Neural Network is characterized
by a single hidden vector dented as ht, which forms the state of the
network.

ŷ = Whyht (42)

ht = tanh(Whhht−1 + Wxhxt) (43)

where ht = f (ht−1, xt; Θ) represents the hidden state at time step t.

Compared with an MLP, we notice serval important differences.

• RNN employs the tanh function instead of sigmoid. It is preferred
as it is centered in 0 and the norm of its gradients are higher than the
norms of the sigmoid gradients which allows for faster convergence.

• The layer at timestep depends on both the previous hidden state
ht−1 and the input xt of that timestep. Importantly, the weights
Why, Whh, Wxh are shared among timesteps.5 5 It means that the same weight matrices

are used at each time step.

4.2 Backpropagation Through Time

First lets define the loss Lt = ∥ŷt− yt∥2 so L = ∑t Lt. Then, we derive
the gradients for each term one by one.

∂L
∂W

=
S

∑
t=1

∂Lt

∂W
(44)

To perform this computation, it is crucial to view the unrolled recur-
rent model as a multi-layer network with a potentially infinite number
of layers. We can then apply backpropagation to efficiently compute
gradients in this extended network structure. For each timestep t we
have

∂Lt

∂W
=

t

∑
k=1

∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂hk

∂+hk
∂W

(45)

machine perception 16

where ∂+ denotes the immediate derivative, which in our cases treats
hk−1 constant w.r.t. the weight W. For simplicity, denote Whh = W and
Wxh = U and ignore the tanh for now. Lets first consider the term ∂ht

∂W .
This may be complicated at first because ht depends on W and on ht−1

it depends on W again. Notice that the partial derivatives cancel out
in the middle resulting in ∂ht

∂hk
directly.

∂ht

∂W
=

∂Wht−1 + Uxt

∂W
(46)

=
∂

∂W

[
ht(ht−1(ht−2(. . . h1(W)))

]
(47)

=
∂+ht

∂W
+

∂ht

∂ht−1

∂+ht−1

∂W
+

∂ht

∂ht−1

∂ht−1

∂ht−2

∂+ht−2

∂W
+ . . . (48)

=
∂+ht

∂W
+

∂ht

∂ht−1

∂+ht−2

∂W
+ · · ·+ ∂ht

∂h1

∂+h1

∂W
(49)

=
t

∑
k=1

∂ht

∂hk

∂+hk
∂W

(50)

We reintroduce tanh so ht = tanh(Whhht−1 +Wxhxt). Let at = Whhht−1 +

Wxhxt then

∂ht

∂at
= diag(1− tanh2(at)) = diag(I− h2

t) (51)

Now lets compute ∂ht
∂hk

for t > k

∂ht

∂hk
=

∂ht

∂ht−1

∂ht−1

∂ht−2
. . .

∂hk+1
∂hk

(52)

=
k

∏
i=k+1

∂hi
hi−1

(53)

=
t

∏
i=k+1

[
diag(I− h2

i)W
]

(54)

That’s a lot of multiplication! Which leads to scaling issues with the
diagonal term. This leads to the vanishing and exploding gradient
problem in the vanilla RNN.

Assuming the existence of an eigenvalue decomposition of the weight
matrix Whh (i.e. Whh is symmetric), we can alternatively express Whh =

QΛQ⊤ where Λ is a diagonal matrix containing the eigenvalues of Whh

along its diagonal. Rearranging the previous matrix we obtain

(W⊤hh)
t−k−1 = (Q⊤ΛQ)t−k−1 = Q⊤Λt−k−1Q (55)

where the last step is due to the fact that QQ⊤ = I as Q is orthogonal.
If we consider f to be a sigmoid or tanh which are both upper bounded
by 1, we can say there exists a γ ∈ R such that

∥diag(f ′(hi−1))∥ < γ (56)

machine perception 17

We show that the gradients could indeed vanish or explode, which
will be problematic during training.

We want to show if λ1 < 1
γ then as t → ∞ the gradient vanishes

and if λ1 > 1
γ then as t→ ∞ the gradient explodes.

Proof. Let λ1 be the largest singular value of the matrix Whh, we
first consider when λ1 < 1

γ . Then for all i we have

∥∥∥ ∂hi
∂hi−1

∥∥∥ ≤ ∥W⊤hh∥∥diag(f ′(hi−1))∥ <
1
γ

γ = 1 (57)

where ∥ · ∥ denotes the spectral norm. Let η ∈ R be such that for

all i,
∥∥∥ ∂hi

∂hi=1

∥∥∥ ≤ η < 1. By induction over i we have

∥∥∥ t

∏
i=k+1

∂h1

∂hi=1

∥∥∥ < ηt−k → 0 as t→ ∞ (58)

A simple solution is simply truncate the gradients after certain timesteps.
Via gradient clipping we can ensure the gradient remains in a certain
threshold (solves exploding gradient). We now introduce two new
RNN architectures that aims to solve vanish gradients.

4.3 LSTM

Long Short Term Memory networks (LSTM) are a special kind of RNN
that are designed to stabilize training by mitigating the vanishing gra-
dient problem. The cell of a LSTM consists of four layer. In particular,
these layers, also called as gates have the following four functions.

Figure 2. LSTM’s gate structure

machine perception 18

• f is the forget gate and has the role of scaling the old cell state ht−1.
Depending on xt and ht−1, it decides which information should be
forgotten from the previous cell state. The output of it is a sig-
moided value, which for each element of the previous cell state ct−1

decides how much of the old state is kept in the current one. (0
delete, 1 keep)

• i is the input gate and has the role of deciding which values of the
state cell should be updated in the current timestep. Its output is
a sigmoided value, which for each element of the cell state decides
how much of it should be written in the current cell state ct. (0
deletes everything, 1 keeps everything)

• o is the output gate and has the role of decidng which values of the
current cell state should be put in the output of the cell ht. Like
the previous gates, its output is a sigmoided value, which for each
element of the current cell state xt, decides how much of it should
flow into the output.

• g is the gate that decides what to write in the cell state. It is a tanh
layer, which creates a vector of new candidate values.

In practice, the vectors xt and ht−1 are stacked and then multiplied
with a big weight matrix in order to obtain the four different values
i, f, o, g with the roles described before.

Given the cell state ct and the input xt and outputs ht−1 have di-
mensionality n and given W ∈ R4n×2n, we have

i
f
o
g

 =

σ

σ

σ

tanh

W
[
xtht−1

]
(59)

where σ denotes the sigmoid function. So we can rewrite W as

W =

Wxi Wci

Wx f Wc f

Wxo Wco

Wxg Wcg

 (60)

Moreover, in a multi-layer architecture, we can see xt as the output of
the layer before h[l−1]

t and we can alternatively write
i
f
o
g

 =

σ

σ

σ

tanh

W [l]
[
h[l]

t h[l]
t−1

]
(61)

Recall that in the case of RNN the equation for ht was

h[l]
t = tanh W [l]

[
h[l]

t h[l]
t−1

]
(62)

machine perception 19

where h ∈ Rn and W ∈ Rn×2n. Once computed the values for i, f, o, g,
we can compute the new cell state ct and the new output ht as

ct = ft ⊙ ct−1 + it ⊙ gt (63)

ht = ot ⊙ tanh(ct) (64)

In vanilla RNNs, the gradient flow relies on matrix multiplication as
seen in ht = tanh(Whhht−1 + Wxhxt) where the weight matrix W re-
mains constant throughout. However, in LSTMs, the gradient flow
takes a different approach. As a matter of fact, the + operator allows
the gradient to directly propagate to the element-wise multiplication
ct−1 ⊙ f.

machine perception 20

Part II

Generative Models

5 Autoencoders

In the field of learning, data is generally represented as measure-
ment vectors, denoted as x ∈ Rn. If we select the features care-
fully, the dimension of these vectors can be low. Modern machine
learning applications however involve in high-dimensional data (im-
ages, audio, or time-series). In such cases, one crucial objective is to
find low-dimensional representations that can effectively compress the
data while preserving its essential information. These representations
should be intepretable and capable of capturing different modes of
variation.

Autoencoders offer a solution through the use of an encoder-decoder
structure. It operates under the assumption that a compressed but
meaningful representation of the data can be obtained if the decoder
is capable of reconstructing the original input solely from that com-
pressed representation 6. 6 In general it means the intermediate

space where the data is projected to.
Other literature might refer a latent space
as code or embedding space

• The encoder f projects the original input space X into a latent
space Z.

• The decoder g maps samples from the latent space Z back to
the input space X.

The objective of the composition [g ◦ f] is there for to approximate
the identity function on the data for a low reconstruction error.

5.1 Linear Autoencoders: the PCA projection

Restricting f and g to be linear. Then, the encoder function f of the
autoencoder becomes equivalent to the projection performed by Prin-
cipal Component Analysis (PCA) projection, which is the projection
achieving the lost reconstruction loss L.

Given N data points, we have

L =
N

∑
n=1
∥xn − x̂n∥2 =

N

∑
n=1
∥xn − g(f (xn))∥2 (65)

They can be found in a closed form. However, they are not too

machine perception 21

powerful.

5.2 Non-Linear Autoencoders

We remove the restriction on f and g to be linear such that the autoen-
coder becomes a non-linear projection of the data. This means both
the encoder and decoder are implemented as neural networks.

To construct such autoencoder, we typically use a feedforward neu-
ral network trained to reconstruct its inputs. It optimizes the following
objective function w.r.t. the encoder parameters Θ f , Θg.

Θ̂ f , Θ̂g = argmin
Θ̂ f ,Θ̂g

N

∑
n=1
∥xn − g(f (xn))∥2 (66)

In general, dim(X) > dim(Z) (undercomplete hidden representation).
The idea is that Z enables the network to learn the important features
of the data by reducing the dimensionality of the hidden space. This
prevents the autoencoder from simply copying the input and forces it
to extract meaningful and discriminative features. They work well in
practice to extract those featurers in training samples, however, it may
not generalize effectively to out-of-distribution samples.

There are cases when dim(Z) > dim(X) (overcomplete hidden repre-
sentation), this lack of compression potentially allows each hidden unit
to simply copy different input components, achieving a perfecting re-
construction loss without extracting any meaningful features. There
are two main uses of autoencoders with overcomplete hidden repre-
sentations: Denoising and Inpainting autoencoders.

The goal of Denoising Autoencoders is reconstructing the original
clean image given a noisy image.

1. During training, a clean image is intentionally corrupted by inject-
ing noise (such as Gaussian noise)

2. The noisy image is then provided as input to an Autoencoder with
an overcomplete hidden representation.

3. The loss is evaluated based on a comparison with the original (clean)
image, so the network is discouraged from simply copying the noisy
image.

4. Hence, the network must learn the necessary transformations to
remove noise and accurately restore the clean information.

The idea of inpainting autoencoders is similar to above.

machine perception 22

5.3 Autoencoder Limitations

In order to generate new samples, it is desirable for the latent space
to exhibit a well-structured nature, characterized by continuity and
interpolation capabilities.

However, the decoder of classical version of autoencoders struggles
to generate high-quality samples. This limitation arises due to the
lack of continuity in the latent space. In regions of the latent space
where there are discontinuities or gaps between clusters, the decoder
has no knowledge and was not exposed to encoded vectors from those
regions. They excel at reconstructing input data but face challenges
with new samples.

5.4 Variational Autoencoder

Variational Autoencoders (VAEs) propose to solve the limitations of
vanilla Autoencoders. VAEs latent space are designed to be contin-
uous. This means VAEs can easily generate new and diverse samples
by smoothly interpolating between different points (explored during
training) in the latent space.

The encoder will output two vectors of size dim(Z): means µ and
standard deviations σ. This stochastic generation means that even for
the same input, although the mean and standard deviation remain
the same, the actual encoding will vary on every single pass simply
due to sampling from a Gaussian distribution. A problem we would
like to avoid is since there are no limits on the values for µ and σ, the
encoder might learn to generate very different µ for each different class
while minimizing σ to reobtain a clustered structure which achieves
a low reconstruction error. This is a problem because we want the
latent space to be continuous, not clustered! This is avoided by KL-
divergence7 between the output distribution and a standard normal 7 DKL(p∥q) = E[log p(x)

q(x)]

distribution. Intuitively, this encourages the encoder to distribute the
encodings evenly around the center of the latent space.

To train a VAE, we want to maximize the likelihood of training
data

p(x) =
∫

z
p(x|z)p(z)dz (67)

p(z) and p(x|z) are known, but we are not able to compute the in-
tegral over all of z. This is intractable! A direct consequence is the
posterior distribution p(z|x) = p(x|z)p(z)

p(x) becomes intractable. In or-
der to solve this problem, we define an approximation of the posterior
qϕ(z|x) computed by the encoder to approximate pθ(z|x).

machine perception 23

log(pθ(x)) = Ez∼qϕ(z|x)[log(p(x))] (68)

= Ez∼qϕ(z|x)

[
log

p(x|z)p(z)
p(z|x)

]
(69)

= Ez∼qϕ(z|x)

[
log

p(x|z)p(z)
p(z|x)

q(z|x)
q(z|x)

]
(70)

= Ez∼qϕ(z|x)

[
log p(x|z)

]
−Ez|x∼qϕ

[
log

q(z|x)
p(z)

]
+ Ez|x∼qϕ

[
log

q(z|x)
p(z|x)

]
(71)

= Ez∼qϕ(z|x)

[
log p(x|z)

]
︸ ︷︷ ︸

reconstruction error

− DKL[q(z|x)∥p(z)]︸ ︷︷ ︸
make approx. posterior close to prior

+ DKL[q(z|x)∥p(z|x)]︸ ︷︷ ︸
intractable, but ≥ 0

(72)

≥ Ez∼qϕ(z|x)

[
log p(x|z)

]
− DKL[q(z|x)∥p(z)]︸ ︷︷ ︸

ELBO

(73)

The second term can be computed in a closed form since both argu-
ments are Gaussian.

With the ELBO, we want to joinly maximize the reconstruction error
and minimize the KL divergence between the approximate posterior
and the prior. The first term encourages the encoder to form clusters
where the samples from the same category or with similar properties
are closely located in the latent space. The second term encourages the
encoder to project latent representations evenly around the center of
the latent space.

During training, we must be able to compute the gradients of the
ELBO w.r.t to the paremeters of the encoder and the decoder. A minor
problem: the process of sampling (in the case of z) from a distribu-
tion that is parameterized by our model is not differentiable. For this

machine perception 24

reason, we use the reparametrization trick. We can now do backprop:

Ez∼qϕ(z|x)

[
log p(x|z)

]
− DKL[q(z|x)∥p(z)] = Ez∼qϕ(z|x)

[
log p(x|z)

]
+ Ez∼qϕ(z|x)

[
log

p(z)
q(z|x)

]
(74)

= Ez∼qϕ(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
(75)

= Ez∼qϕ(z|x)

[
log

pθ(x, z)
qϕ(z|x)

]
(76)

Now we compute the gradients w.r.t θ, ϕ

∇θ,ϕEz∼qϕ(z|x)

[
log

pθ(x, z)
qϕ(z|x)

]
= ∇θ,ϕEϵ∼N (0,I)

[
log

pθ(x, f (x, ϵ, θ))

qϕ(f (x, ϵ, θ)|x)

]
(77)

= Eϵ∼N (0,I)

[
∇θ,ϕ log

pθ(x, f (x, ϵ, θ))

qϕ(f (x, ϵ, θ)|x)

]
(78)

≈ 1
K

K

∑
i=1
∇θ,ϕ log

pθ(x, f (x, ϵ, θ))

qϕ(f (x, ϵ, θ)|x) (79)

We can derive an analytic solution for the KL-divergence term.
We know pθ(z) ∼ N (0, I) and qϕ(z|x) ∼ N (µ, σ2 I)

−DKL[qϕ(z|x)∥pθ(z)] =
∫

qϕ(z|x) log
pθ(z)

qϕ(z|x)
dz (80)

=
∫

qϕ(z|x) log pθ(z)dz− (81)∫
qϕ(z|x) log qϕ(z|x)dz (82)

We use the fact that p(z) = N (µp, σ2
p I) and q(z) = N (µq, σ2

q I).
For the first term, we get

− J
2

log(2π)− 1
2

J

∑
j=1

(σ2
j + µ2

j) (83)

And the second term we get

− J
2

log(2π)− 1
2

J

∑
j=1

(σ2
j + 1) (84)

machine perception 25

Adding them, we can conclude

−DKL[qϕ(z|x)∥pθ(z)] =
1
2
(1 + log(σ2

j)− µj − σ2
j) (85)

5.5 Monte Carlo Gradient Estimator

In latent variable models, we often encounter the problem of comput-
ing gradient of an expectation

∇ψEpψ(z)[f (z)] = ∇ψ

∫
pψ(z) f (z)dz (86)

where the random variable z is parameterized by ψ and its samples are
fed into another differentiable function f . We need to calculate the gra-
dient of a stochastic process w.r.t. ψ as in the above the equation. Note
that this is equivalent to the first term of ELBO where f = log pθ(x|z).
We apply the reparameterization trick to compute the gradient in a
more amendable way:

Ep(ϵ)[∇ψ f (z)] = Ep(ϵ)[∇ψ f (g(ϵ, ψ))] (87)

Now we can calculate the expectation of a gradient instead of the gra-
dient of an expectation. We can compute the expectation via Monte
Carlo integration

Ep(ϵ)[∇ψ f (g(ϵ, ψ))] =
1
S

S

∑
s=1

[∇ψ f (g(ϵ(s), ψ))]ϵ(s)∼p(ϵ) (88)

Here, we prove the change of variables step we used above.

Proof. We have z = g(ϵ, ψ) and p(z)|dz| = p(ϵ)|dϵ| so∫
pψ(z) f (z)dz =

∫
p(ϵ) f (z)dϵ (89)

=
∫

p(ϵ) f (g(ϵ, ψ))dϵ (90)

Hence,

Ep(ϵ)[∇ψ f (g(ϵ, ψ))] = ∇ψ

∫
p(ϵ) f (g(ϵ, ψ))dϵ (91)

= ∇ψEp(ϵ)[f (g(ϵ, ψ))] (92)

The gradient is unrelated to the distribution so we obtain the re-
sult

Ep(ϵ)[∇ψ f (g(ϵ, ψ))] (93)

machine perception 26

Figure 3. (Left) Inference (en-
coder/recognition) and (right) genera-
tive (decoder) models of a hierarchical
VAE. Circles are stochastic variables and
diamonds are deterministic variables.
This model is equal to a VAE for L = 1

5.6 Hierarchical Latent Variable Models

In order to increase the expressiveness of latent variable models, we
can form a hierarchy of stochastic latent variables by stacking them.
In figure 3, a hierarchical latent variable model is illustrated. Simi-
lar to VAEs, we introduce an inference model q(z|x) and optimize a
variational lower bound on the log-likelihood.

From figure 3, we can see that qϕ(z1, . . . , zL|x) and generative pθ(z1, . . . , zL)

can be decomposed.

qϕ(z1, . . . , zL|x) = qϕ(z1|x) . . . qϕ(zL−1|x)qϕ(zL|x) (94)

pθ(z1, . . . , zL) = pθ(zL)p(zL−1|zL) . . . pθ(z1|z2) (95)

We can now derive the ELBO for z = {z1 . . . zL}. We start with

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)]− DKL(qϕ(z|x)∥pθ(z)) (96)

The derivation is equivalent to single random variable case. If we
expand the random variables:

L(θ, ϕ; x) = Eqϕ(z1 ...zL |x)[log pθ(x|z1 . . . zL)]−DKL(qϕ(z1 . . . zL|x)∥pθ(z1 . . . zL))

(97)
Now we use the decomposition we showed earlier, note that x is inde-
pendent from all zl>1, given z1:

L(θ, ϕ; x) = Eqϕ(z1|x)[log pθ(x|z1)]− DKL(qϕ(z1 . . . zL|x)∥pθ(z1 . . . zL))

(98)
Now we expand the KL-divergence term:

L(θ, ϕ; x) = Eqϕ(z1|x)[log pθ(x|z1)]−
∫

z1 ...zL

qϕ(z1 . . . zL|x) log
pθ(z1 . . . zL)

qϕ(z1 . . . zL|x)
dz1 . . . zL

(99)

machine perception 27

Now we can use the decomposition of the inference and generative
models:

L(θ, ϕ; x) = Eqϕ(z1|x)[log pθ(x|z1)]−
∫

z1 ...zL

L

∏
j=1

qϕ(zj|x) log
L

∏
i=1

pθ(zi|zi+1)

qϕ(zi|x)
dz1 . . . zL

(100)
where we abusively denote pθ(zL|zL+1) = pθ(zL). Now we take the
product out of the log as a sum and move it outside of the integral

L(θ, ϕ; x) = Eqϕ(z1|x)[log pθ(x|z1)]−
L

∑
i=1

∫
z1 ...zL

L

∏
j=1

qϕ(zj|x) log
pθ(zi|zi+1)

qϕ(zi|x)
dz1 . . . zL

(101)
Since we only have zi and zi+1 in the log, the qϕ(zj|x) will be marginal-
ized out for j /∈ {i, i + 1}

L(θ, ϕ; x) = Eqϕ(z1|x)[log pθ(x|z1)]−
L

∑
i=1

∫
z1 ...zL

qϕ(zi+1|x)qϕ(zi|x) log
pθ(zi|zi+1)

qϕ(zi|x)
dzidzi+1

(102)
Now we can transform the integral into an expectation and KL-divergence
term, which gives us the ELBO for hierachical latent variable models.

L(θ, ϕ; x) = Eqϕ(z1|x)[log pθ(x|z1)]−DKL(qϕ(zL|x)∥pθ(zL))−
L−1

∑
i=1

Ezi+1∼qϕ(zi+1|x)DKL(qϕ(zi|x)∥pθ(zi|zi+1))

(103)

5.7 β-VAE

VAEs still have problems with their latent space: the representations
are still entangled. This means that we do not have an explicit way
of controlling the output. For example, in the MNIST dataset, we
have no way of explicitly sampling a specific number. The β-VAE
solves this problem by giving more weight to the KL term with an
adjustable hyperparameter β that balances latent channel capacity and
independence constraints with reconstruction accuracy. The intuition
behind this is that if factors are in practice independent from each
other, the model should benefit from disentangling them.

In practice, we want to force the KL loss to be under a certain thresh-
old, so we write

max
ϕ,θ

Ex∼D

[
log pθ(x|z)

]
subject to DKL

[
qϕ(z|x)∥pθ(z)

]
< δ (104)

Rewriting the constrain optimization problem as a Lagrangian, we ob-

machine perception 28

tain:

F (θ, ϕ, β) = Ez∼qϕ(z|x)

[
log pθ(x|x)

]
− β

(
DKL

[
qϕ(z|x)∥pθ(z)

]
− δ

)
(105)

= Ez∼qϕ(z|x)

[
log pθ(x|x)

]
− βDKL

[
qϕ(z|x)∥pθ(z)

]
− βδ︸︷︷︸
≥0

(106)

≥ Ez∼qϕ(z|x)

[
log pθ(x|x)

]
− βDKL

[
qϕ(z|x)∥pθ(z)

]
(107)

Thus, the loss (opposite of the objective function) becomes

Lβ-VAE = −Ez∼qϕ(z|x)

[
log pθ(x|x)

]
+ βDKL

[
qϕ(z|x)∥pθ(z)

]
(108)

machine perception 29

6 Autoregressive models

A regression model, such as linear regression, models an output val-
ued based on a linear combination of input values.

ŷ = b0 + b1x1 (109)

This technique can be used on time series where input variables are
taken as observations at previous time steps, called lag variables. For
example, we can predict the value of the current time step t given the
observations at the last two time steps t− 1 and t− 2. As a regression
model, this would look as follows:

xt = b0 + b1xt−1 + b2xt−2 (110)

Because the regression model uses data from the same input variable
at previous time steps, it is referred to as an autoregression (regression
of self).

We briefly talk about Sequence models. A particular applica-
tion of autoregressive models is in sequence modeling (i.e. the
modeling of sequential data). Some examples of sequence models
are language models, which map sequences to scalars or machine
translation models, which map sequences to sequences. Sequence
models are often considered generative models because they can
generate new sequences based on learned patterns.

In particular, autoregressive models generate one element of
the sequence at a time, conditioning its generation on previously
generated elements. In the typical generation setting, such a model
takes a seed of input, such as x1, . . . xk and predicts the element
in the sequence xk+1. Then we repeat using x2, . . . , xk+1 to pre-
dict xk+2 and so on. By employing this approach, autoregressive
models can effectively capture dependencies between elements in
a sequence and build a probability distribution over possible se-
quences. This distribution can be used to generate new sequences
that adhere to the learned patterns. In the subsequent chapter, we
will delve into the techniques and strategies for parameterizing
sequence models to accomplish this objective.

6.1 Learning distribution of natural data

Suppose we have an image consisting of n pixels, and each pixel can
take on one of two colours: black or white. We can represent the
colour of each pixel using Bernoulli random variables X1, X2, . . . , Xn

where Xi = 1 corresponds to a white pixel, Xi = 0 corresponds to a

machine perception 30

black pixel. The space of possible configurations consists of 2n states,
as each pixel can independently be black or white. Our goal is to find
a parameterization of p(x1, x2, . . . , xn) that allows us to learn such a
distribution from a dataset of images. Once we can define this distri-
bution, we can sample from it to generate new images.

Our first attempt is the tabular approach. Via the chain rule of prob-
ability we can factorize the joint distribution over the n dimensions:

p(x) = p(x1, . . . , xn) =
n

∏
i=1

p(xi|x1, . . . , xi−1) =
n

∏
i=1

p(xi|x< i) (111)

Advantage: can represent any possible distribution of n random vari-
ables

Limitation: We need Θ(∑n
i=1 2i−1) = O(2n−1) parameters to parame-

terize this model.

So a straightforward approach in reducing the number of parame-
ters is to assume that the variables are independent. In this case, we
obtain the following expression.

p(x) = p(x1)× · · · × p(xn) (112)

Advantage: we only need n parameters! Feasible fro training.
Limitation: Independence assumption is likely too strong, in practice,

it would just be random sampling of pixels unrelated to each other.

So the third attempt is to specify conditionals with a fixed number
of parameters. In practice, for each position in the sequence, we learn
a function fi : {0, 1}i−1 7→ [0, 1] governed by Θi, which takes the previ-
ous pixels as input and outputs the probability of current pixel being
white p(xi = 1|x1, . . . , xi−1). The number of total parameters of this
model is ∑n

i=1 |Θi|. If we carefully set the dimensions of all {Θi}n
i=1,

we obtain a controllable number of parameters.

6.2 Fully Visible Sigmoid Belief Network

In a Fully Visible Sigmoid Belief Network, the function f is modelled
via logistic regression. Specifically, for i = 1, . . . , n, we have:

f1(x1, x2, . . . , xi−1) = σ(αi
0 + αi

1x1 + · · ·+ αi
i−1xi−1) (113)

where σ is the sigmoid function. At the i-th timestep,w e have i − 1
parameters denoted as Θ = {α1, . . . , αi−1. Over a horizon of n steps,
the number of parameters can be calculated as

n

∑
i=1
|Θi| =

N

∑
i=1

i =
n2 + n

2
∈ O(n2) (114)

machine perception 31

6.3 Neural Autoregressive Density Estimator (NADE)

The Neural Autoregressive Density Estimator (NADE) is a solution to
model binary sequences which offers an alternative parameterization
based on Multi-Layer Perceptrons (MLPs). This parameterization of-
fers statistical and computational efficiency compared to the vanilla
approach. Statistical and computational efficiency compared to the
vanilla approach.

hi = σ(b + W:,<ix<i) (115)

x̂i = σ(ci + Vi,:hi) (116)

The weight matrix W ∈ Rn×d and the bias vector c ∈ Rd are shared
across the conditionals. The parameter sharing offers two advantages:

1. The total number of parameters gets reduced from (n2d) to (nd)
2. The hidden unit activation can be evaluated in O(nd) doing the

following
hi = σ(ai) (117)

ai+1 = ai + W:,ixi (118)

where a1 = c

NADE is trained by maximizing the average log-likelihood

1
n

n

∑
j=1

log p(x(j)) =
1
n

n

∑
j=1

log

(
D

∏
i=1

p(x(j)
i)|x(j)

<i

)
(119)

where j is the sample index. During training ode NADE, teacher
forcing approach is used: ground truth values (instead of pre-
dicted ones) of pixels are used for conditioning when predicting
subsequent values. At inference time predicted values are used.

6.4 Masked Autoencoder Distribution Estimation (MADE)

The idea behind MADE is to construct an Autoencoder that fulfils
the autoregressive such that its outputs can be used as conditionals
p(xi|x<i).

To fulfill the autoregressive property, no computational path be-
tween output unit xd and any of its input units xd . . . xD must exist
(relative to some ordering).

In particular, we can achieve this by defining the mask matrices MW

and MV as
MW

i,j = I{m[l](i) ≥ m[l−1](j)} (120)

MV
i,j = I{m[l](i) > m[l−1](j)} (121)

machine perception 32

6.5 Pixel RNN

Pixel RNN generate image starting from the corner and modeling the
dependency on previous pixels using a LSTM. In this framework, we
condition the probability of the value of a specific pixel both on the two
neighboring pixels it is directly connected to and the RNNs hidden
state. Issue: generation is sequential, thus, slow.

6.6 Pixel CNN

A similar approach is used in PixelCNN with the difference that de-
pendencies are modeled using masked convolutions (To correctly model
the conditional probability,one needs to prevent the current and fu-
ture pixel from contributing to the prediction). This particular type
of convolution is needed to ensure that the autoregressive property is
satisfied. Specifically, the conditional probability is expressed as:

p(xi|x1, . . . , xi−1) = p(xi,R|x<i)p(xi,G|x<i, xi,R)p(xi,B|x<i, xi,R, xi,G)

(122)
In order to guarantee this property, we use two types of masks: Mask
A and Mask B. Mask A is only applied to the first convolutional layer
and restricts connections to those colours in current pixels that have
already been predicted. Mask B is applied to higher layers and al-
lows them to be fully connected. During training, we maximize the
likelihood of training images. 8 8 Lots of tricks can be used to improve

PixelCNN such as using gated convolu-
tional layers, short-cut connections, dis-
cretized logistic loss, multi-scale, train-
ing tricks...

To summarize PixelCNN: Pros

1. Explicit likelihood p(x)

2. Likelihood of training data gives good evaluation metric

3. Good samples

Con: Sequential generation: slow at inference time (even though
its faster to train than PixelRNN).

6.7 WaveNet: autoregressive generative model for audio data

The concept of WaveNet is aimed to adapt the PixelCNN framework
for audio data, which typically involves sequences with a much longer
time horizon, such as 16,000 samples per second. To capture long-term
dependencies effectively, WaveNet incorporates the concept of dilated
convolutions. This type of convolution allows for the exploration of
dependencies over larger distances without increasing the number of
layers.

machine perception 33

6.8 Variational RNNs

The internal transition structure of a standard RNN is entirely deter-
ministic. The only source of randomness or variability in the RNNs
can be found in the conditional output probability model. More specif-
ically, pθ(xt|x<t) can be represented with Bernoulli or Gaussian distri-
butions for discrete and real-valued data, respectively.

Reasons for augmenting RNNs with random latent variables:

1. To increase the modelling capacity
2. To better capture the uncertainty
3. To infer from the observed variables in the sequence
4. Higher level of abstractions.

Variational RNNs (VRNN) contains a VAE at every time-step. Recall
from VAEs that the prior term is a standard Gaussian while inference
and generation operations are parameterized by neural networks. In
VRNNs we also decompose it into a prior, inference and generation
operations but as well as a recurrence step to take the temporal struc-
ture into account. The prior is dynamic and conditioned on the sate
variable ht−1. There is a common subset between the inference ψ and
generative θ model parameters. The operations are tied through the
RNN hidden state ht The prior term is therefore

Figure 4. VRNN in graphical model no-
tation decomposed into individual oper-
ations. RNN is augmented with a ran-
dom latent variable zt. Green dashed
connections represent the computation
that is part of the inference model.

pθ(z|h) =
T

∏
t=1

pθ(zt|x<t, z<t) (123)

where x<t, z<t correspond to the dependencies on the past time-steps
through the deterministic hidden state ht−1. The inference model
qϕ(z|x) is

qϕ(z|x) =
T

∏
t=1

qϕ(zt|z<t, x<t, xt) (124)

The transition function is

ht = fθ(ht−1, xt, zt) (125)

The factorization over time of the generative model pθ(x, z) is

pθ(x, z) =
T

∏
t=1

pθ(xt|zt, z<t, x<t)pθ(zt|z<t, x<t) (126)

machine perception 34

We can now substitute what we decomposed for the prior and infer-
ence term into the ELBO. We therefore obtain

log pθ(xt) ≥ Lt(θ, ϕ; xt) (127)

= Eqϕ(zt |xt ,x<t ,z<t)

[
log pθ(xt|zt, z<t, x<t)

]
− DKL(qϕ(zt|xt, x<t, z<t)∥pθ(zt|z<t, x<t))

(128)

The full training objective ELBO L(θ, ϕ; x) is simply the sum of single
step ELBO Lt over the entire sequence.

In the standard VAE, the KL-divergence term ensures that the ap-
proximate posterior does not deviate too much from the fixed prior. It
can be considered as a bound on the approximate posterior, enforcing
the model to pack more information, hence resulting in a smoother
latent space. The KL-divergence term in the VRNN has a different
interpretation. Looking at the ELBO, the first term is the reconstruc-
tion of the current step xt by using the previous hidden state ht−1 and
latent sample zt. At training time, the latent variable zt is computed
by using the hidden state ht−1 and the current step xt. Ignoring the
reccurence is the same as a VAE.

The inputs of the approximate posterior (inference) and prior mod-
els are the same except the additional input xt to the inference model.
Due to the different inputs, by design there is a discrepancy between
these two distributions. The KL term aims to minimize the discrep-
ancy between the approximate posterior and the prior. There are two
scenarios:

1. The approximate posterior model ignores the additional informa-
tion from xt so that minimizing the KL term is straight forward. In
this case, the latent variable zt is no longer informative and genera-
tion mostly relies on the hidden state ht−1

2. The approximate posterior model exploits some information from
the input xt, so that the reconstruction term is better optimized
while the KL term ensures that the approximate posterior does not
memorize the input content xt and that the prior is enforced to be
predictive of the next step t by only using past information ht−1.
The latter is achieved since the prior is also parameterized by a net-
work.

6.9 Self-Attention and Transformers

Another approach that can be used for sequence modeling is based on
the Transformers architecture. The prediction of the current time step
is formed by taking a convex combination of the entire input sequence.
The Attention operation, a key component of Transformers, learns to

machine perception 35

Figure 5. The transformer architecture
(left) encoder and (right) decoder.

machine perception 36

identiy and select the relevant past information for predicting the next
step.

To implement the attention mechanism, given a matrix x ∈ RT×D,
we first extract the keys (K), values V and queries Q from X as follows:

K = XWK (129)

Q = XWQ (130)

V = XWV (131)

where WK, WQ, WV are learnable weightes and are generally D × D
matrices (where D is the representation size of the inputs X). We can
also choose the queries and keys to have a different dimensionality.
Intuitively, the attention mechanism learns a codebook representation
from the inputs X (we can think of this as a dictionary representation where
we map keys K to the values V using the queries Q). We then identify a set
of values to form a new prediction with a weighted, linear combination
of these values.

If all keys, values and queries are extracted from the same se-
quence, we call it self-attention. If the queries are generated from
a different sequence, we call it cross-attention.

Scaled Dot-Product Attention9 has α = score(qt, Ki) =
qtK⊤i√

dk
. The 9 The following sections are adpated

from a research paper I wrote on Trans-
formersattention function is then

Attention(Q, K, V) = softmax(
QK⊤√

dk
)V (132)

where the softmax is applied column wise. The scale 1√
dk

was pro-

posed to prevent the softmax from pushing into extremely small gra-
dients, which is caused by the large dot product.

Let WQ
i , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel

where h is the number of heads. Then, we can define each head as:

headi = Attention(QWQ
i , KWK

i , VWV
i) (133)

By concatenating each of these heads, we get the Multi-head Attention:

MHSA(Q, K, V) = Concat(head1 . . . headh)W
O (134)

The inputs, outputs masks have a 1 for non PAD indices and 0 oth-
erwise. Since we also give the outputs during training, we need to
correctly apply subsequent masks along with shifting output embed-
ding to the right to ensure the auto-regressive nature of the model. The
subsequent mask is a lower triangular matrix filled with 1s. The mask-
ing for the output is done as taking the & operation with the output
mask.

machine perception 37

7 Normalizing Flows and Invertible Neural Networks

So far we have seen variational autoencoders pθ(x) =
∫

θ(x, z)dz and
autoregressive models pθ(x) = ∏n

i=1 pθ(xi|x<i). Variational autoen-
coders can learn features/representations via a learned latent variable
z. However, they have intractable marginal likelihoods! Autoregressive
models have tractable likelihoods but have no latent space concept and
therefore does not have a direct mechanism to learn the features.

Some Desired properties of any model distribution

1. Analytic model density and easy to sample
2. The distribution should represent for complex data, such as

images or videos. (This however is usually muti-modal and
complex. Highly non-trivial to sample from it)

So can we design a latent variable model with tractable likeli-
hoods?

The answer is YES! All thanks to the "change of variables" tech-
nique, which allows us to create a complex distribution from a simple
distribution, and a mapping between them.

7.1 Change of Variables

Lets quickly review the change of variables technique. In the simple
1D case:

(u-)Substitution: For x = g(u)∫ x1=g(b)

x0=g(a)
f (x)dx =

∫ u1=b

u0=a
f (g(u))g′(u)du (135)

A similar change of variables can be applied in the case of prob-
ability distributions. Suppose we have a random variable z ∼ pz(z)
and x = f (z) where f is a monotone, continuous and differentiable
function with inverse z = f−1(x). Then the pdf of x is given by

px(x) = pz(f−1(x))| f−1′(x)| = pz(z)| f−1′(x)| (136)

Now lets extend this to any dimension.

pX(x) = pZ(f−1(x))
∣∣∣∣det

(∂ f−1(x)
∂x

)∣∣∣∣ (137)

which is also pZ(f−1(x))
∣∣∣det

(
∂ f (x)

∂x

)∣∣∣−1
. Note the Jacobian matrix

machine perception 38

is invertible. It is lower triangular to compute the determinant in O(d)
time.

7.2 Normalizing Flows

Normalizing flows is an direct application of the change of variables.
Consider directed, latent variable model over observed variables X
and latent variables Z. The mapping between Z and X is given by
deterministic and invertible function fθ : Rd 7→ Rd, s.t. X = fθ(Z) and
Z = f−1

θ (X). The marginal likelihood is

pX(x; θ) = pZ(f−1(x))
∣∣∣∣det

(∂ f−1(x)
∂x

)∣∣∣∣ (138)

We can parameterize the transformation f with a neural network.
However, an aribtary neural network does not work here. From a theo-
retical perspective, the neural network must be differentiable, invert-
ible and dimension preserving. For a computational perspective, the
Jacobian determinant must be computed efficiently. Figure 6 shows a

Figure 6. Combined Coupling layers.
It’s design ensures the efficient compu-
tation of the Jacobian determinant. Note
that the function β can be arbitrarily
complex and does not need to be invert-
ible.

combined coupling layer. If we only consider the mapping between x
and y we have the forward pass as:[

yA

yB

]
=

[
h(xA, β(xB))

xB

]
(139)

Inverse pass as: [
xA

xB

]
=

[
h−1(yA, β(yB))

yB

]
(140)

And the Jacobian matrix as: [
h′ h′β′

0 1

]
(141)

Where h is an element-wise function and β is arbitarily complex, which
could be an MLP, CNN, etc. Notice the bottom part of the input simply
gets copied over, which is why we combine coupling layers as shown
in 6.

machine perception 39

A single nonlinear transform is normally not powerful enough. More
complex transformations can be attained via composition. Now we
have a flow of transformations, each transform can be a neural net-
work.

x = f (z) = fk ◦ fk−1 ◦ . . . f2 ◦ f1(z) (142)

Based on the generic change of variables we have

pX(x; θ) = pZ(f−1(x))∏
k

∣∣∣∣∣det
(∂ f−1

k (x)
∂x

)∣∣∣∣∣ (143)

Training We train the model via maximizing the EXACT log like-
lihood over the dataset D

log px(D) = ∑
x∈D

(
log pZ(f−1(x)) + ∑

k

∣∣∣∣∣log det
(∂ f−1

k (x)
∂x

)∣∣∣∣∣
)

(144)
we assume that samples are independently and identically dis-
tributed.

Inference At test time:

• To generate sample x, we can draw a sample from z ∼ pZ and
transform it via f : x = f (z)

• To evaluate the probability of an observation x, we leverage the
inverse transform z = f−1(x) to calculate its probability pZ(Z)

7.3 Planar Normalizing Flow

Given the latent variable z ∈ Rd, the mapping funcion is given by

f (z) = z + uh(w⊤z + b) (145)

where u, w, b are learnable parameters and h is a nonlinear activation
function. f is continuously differentiable and invertible. Assuming

z ∼ N (0, I), i.e., pz(z) = ∏i
1√
2π

exp(− z2
i

2). The objective function
over the learnable parameters can be

argminL = argmax log px(x) = argmin
{
|z|2 + log |1 + h′u⊤w|

}
(146)

Proof. By definition of normalizing flows, we obtain

px(x) = pz(f−1(x))
∣∣∣∣log det

(∂ f−1(x)
∂x

)∣∣∣∣−1

(147)

machine perception 40

So we have
∂ f
∂z

= I + h′(w⊤z + b)u ·w⊤ (148)

Via the matrix determinant lemma, we get

det
(∂ f−1(x)

∂x

)
= (1 + h′u⊤Iw)det(I) = (1 + h′u⊤w) (149)

Applying the inverse to above and substituting back to px(x) and
applying change of variables we get

px(x) = pz(z)(1 + h′u⊤w) (150)

Applying the definition of gaussians and using log rules, we ob-
tain

px(x) = −|z|2 − log |1 + h′u⊤w| (151)

So

argmax log px(x) = argmin
{
|z|2 + log |1 + h′u⊤w|

}
(152)

7.4 Conditional Coupling Normalizing Flow

In many practical cases, we wish to generate samples based on cer-
tain conditions, such as generating images based on the object labels.
Here we consider an example of conditional normalizing flow with the
following relation:

px(x) = pz(f−1(x))
∣∣∣∣log det

(∂ f−1(x)
∂x

)∣∣∣∣−1

(153)

with x, z ∈ RD. The function f is given by a coupling layer, i.e.

x0 = z0 (154)

x1 = τ(z0) + z1 ⊙ σ(Az0 + b) (155)

in which x0, z0 ∈ Rd0 , x1, z1 ∈ RD−d0 . σ denotes a positive nonlin-
ear activation function, τ : Rd0 7→ RD−d. A, b are learnable affine
transform parameters and ⊙ denotes the element-wise multiplications
(Hadamard product). The exact likelihood is

log p(x|c) = log p(z|c)−
D−d0

∑
j−1

log
[
σ(Az0 + b)

]
j

(156)

where []j denotes the j-th entry of the vector.

machine perception 41

Proof. First, apply logarithms on the conditional normalizing flow
relation (note we took the inverse down and made it a minus due
to log rules)

log px(x) = log pz(f−1(x))− log
∣∣∣∣log det

(∂ f−1(x)
∂x

)∣∣∣∣ (157)

Now lets find the second term, f is a coupling layer in the form of[
x0

x1

]
=

[
z0

τ(z0) + z1 ⊙ σ(Az0 + b)

]
(158)

We find the Jacobian, we can think of f = [f1, f2] and z = [z1, z2]

det
(∂f(z)

∂z

)
= det

([
∂ f1(z)

∂z0

∂ f1(z)
∂z1

∂ f2(z)
∂z0

∂ f2(z)
∂z1

])
(159)

= det

([
I 0

∂ f2(z)
∂z0

σ(Az0 + b)

])
(160)

=

(
D−d0

∏
j=1

diag(σ(Az0 + b))

)−1

(161)

Via change of variables and logarithm properties, substituting it
back to the conditional normalizing flow relation we get

log p(x|c) = log p(z|c)−
D−d0

∑
j−1

log
[
σ(Az0 + b)

]
j

(162)

machine perception 42

8 Generative Adversarial Networks

All generative models we have seen so far act maximizing the likeli-
hood. However there are cases when high-dimensional data, the log-
likelihood can be heavily influenced by the term proportional to d,
resulting in an high log-likelihood even when the majority of the gen-
erated samples are of poor quality. There are also instances where we
can generate high-quality even when the log-likelihood is low when
the model simply memorizes the training data, allowing it to replicate
the exact samples it has seen before. However, when faced with new,
unseen data during testing, the model struggles to assign non-zero
probabilities, resulting in a poor log-likelihood.

To address these situations, likelihood-free models (Implicit Mod-
els or Neural Samplers) come into play. They are capable of handling
highly expressive model classes, often referred to as universal, and
can also handle cases where the density function is undefined or in-
tractable. However, it’s important to note that likelihood-free models
present their own set of challenges. They lack a well-established the-
ory and may require different learning algorithms compared to explicit
models.

Lets first define some components behind the GAN model.

Generator
G : RQ 7→ RD (163)

The generator G is a neural network that is trained to ideally map
random normal-distributed inputs, drawn from Z, to a sample
following the data distribution as output.

Discriminator
D : RD 7→ [0, 1] (164)

The discriminator D is trained to output a probability. Ideally the
discriminator assigns a probability of 1 if the input is a real image
and a probability of 0 if the input is a generated (fake) image.

8.1 GAN Objective

Assume G is fixed to train D given a set of real samples xn ∼ pdata

where n = 1, . . . , N. We generate an equal number of random samples
zn ∼ N (0, 1) which allows us to form the training dataset D as

D = {(x1, 1), . . . (xN , 1)︸ ︷︷ ︸
real samples

, (G(z1), 0), . . . , (G(zN), 0)︸ ︷︷ ︸
fake samples

} (165)

machine perception 43

To train D given the data D, we use Binary Cross Entropy (BCE) loss:

L(D) = − 1
2N

(
N

∑
i=1

y(i) log(D(xi)) +
2N

∑
N+1

(1− yi) log(1− D(xi))

)
(166)

where yi are the ground truth binary labels. Thus providing us with
an objective to train D as a function of G:

D∗ = argmin
D
−1

2

(
Ex∼pdata

[
log D(x

]
+ Ez∼pz

[
log(1− D(xi))

])
(167)

Then, to find the optimal discriminator G∗, we aim to fool any possi-
ble discriminator D. Thus, we minimize the value function V(D, G) =

Ex∼pd [log D(x)] +Ez∼pz [log(1−D(x̂))] computed for the optimal dis-
criminator D∗

G∗, D∗ = argmin
G

argmax
D

V(D, G) (168)

Then we can derive an optimal discriminator. Note I will be using
pd for the data distribution and pm for the model distribution.

The Optimal Discriminator is, for each generator G

D∗ =
pd(x)

pd(x) + pm(x)
(169)

Proof.

D∗ = argmax
D

V(D, G) (170)

= argmax
D

Ex∼pd [log D(x)] + Ez∼pz [log(1− D(x̂))] (171)

= argmax
D

∫
x

pd(x) log(D(x))dx +
∫

z
pz(z) log(1− D(G(z))dz

(172)

= argmax
D

∫
x

pd(x) log(D(x)) + pm(x) log(1− D(x))dx (173)

Note that we used the law of unconscious statistician to change
the variables. Considering any a, b ∈ R2\{0, 0} and the function
f (y) = a log(y) + b log(1− y). f reaches its maximum in the point

a
a+b as

f ′(y) =
a
y
− b

1− y
= 0 ⇐⇒ y =

a
a + b

(174)

machine perception 44

and checking its second derivative ∀a, b > 0

f ′′(y) = − a
y2 −

b
(1− y)2 < 0 (175)

which is indeed a maximum point. Thus,

D∗ =
pd(x)

pd(x) + pm(x)
(176)

Now we will derive the global optimum of the training criterion.
First, we can substitute the D∗ which we derived earlier

V(G, D∗) = Ex∼pd

[
log
(pd(x)

pd(x) + pm(x)

)]
+Ez∼pz

[
log
(

1− pd(x)
pd(x) + pm(x)

)]
(177)

Rewriting the second term

V(G, D∗) = Ex∼pd

[
log
(pd(x)

pd(x) + pm(x)

)]
+Ez∼pz

[
log
(pm(x)

pd(x) + pm(x)

)]
(178)

Inside each log we multiply and divide by 2

V(G, D∗) = Ex∼pd

[
log
(2pd(x)

2(pd(x) + pm(x))

)]
+ Ez∼pz

[
log
(2pm(x)

2(pd(x) + pm(x))

)]
(179)

= Ex∼pd

[
log
(2pd(x)

pd(x) + pm(x)

)]
+ Ez∼pz

[
log
(2pm(x)

pd(x) + pm(x)

)]
− log 4

(180)

= DKL

(
pd∥

pd(x) + pm(x)
2

)
+ DKL

(
pm(x)∥ pd(x) + pm(x)

2

)
− log 4

(181)

= 2DJS(pd(x)∥pm(x))− log 4 (182)

As G∗ = argminG V(D∗, G) and ∀x we hahve DJS ≥ 0, the optimal
value is achieved when DJS(pd(x)∥pm(x)) = 0 that specifically when
pd(x) = pm(x), so

V(G∗, D∗) = − log 4 (183)

Global optimum of training criterion

Ex∼pd [log D(x)] + Ez∼pz [log(1− D(G(z)))] (184)

is achieved if pm(x) = pd(x) and at optimum V(G∗, D∗) = − log 4

machine perception 45

8.2 Convergence of training algorithm

Convergence of training algorithm If G and D have enough ca-
pacity and at each update step D is allowed to reach D = D∗ and
pm is updated to improve

V(pm, D∗) = Ex∼pd [log D∗(x)] + Ez∼pz [log(1− D∗(x))] (185)

∝ sup
D

∫
x

pm(x) log(1− D(x))dx (186)

then pm converges to pd

Proof. The argument of the supremum is convex in pm. The supre-
mum operation does not change the convexity, thus V(G, V∗)is
also convex in pm with global optimum as in Theorem 1.4.2 of the
course notes.

The theoretical results make very strong assumptions,

• The generator G and discriminator D have enough capacity
• The discriminator D reaches its optimum D∗ at very outer iteration
• We directly optimize pm instead of its parameters Θ

In practice, it happens that G and D have finite capacity, D is optimized
for only k steps. Using a neural netowrk for G might mean the function
is no longer convex. Thus in practice pm may not converge to pd and
oscillate. GANs however, still work well in practice by keeping D close
to D∗ provides meaning gradients for G to improve generation.

8.3 Training

1: Initialize G and D with random weights ΘG, ΘD

2: while not converged do
3: for k steps do
4: Draw n training samples {x1, . . . xn} from pd(x)
5: Draw n training samples {z1, . . . zn} from p(z)
6: LD = 1

n ∑n
i=1 log(D(xi)) + log(1− D(G(zi)))

7: perform a gradient ascent step on ∇ΘDLD

8: end for
9: Draw n training samples {z1, . . . zn} from p(z)

10: LG = 1
n ∑n

i=1 log(D(G(zi)))

11: perform a gradient ascend step on ∇ΘGLG

12: end while

Algorithm 1. GAN training algorithm
with gradient ascent

machine perception 46

The original equation LG = 1
n ∑n

i=1 log(1− D(G(zi))) may not pro-
vide sufficient gradient for G to learn well. In early stages, D can
reject samples from G because G is poor and thus the generated sam-
ples are highly different. In this case log(1−D(G(zi))) saturates. This
is why instead of minimizing log(1−D(G(zi))) we maximize ∇ΘGLG

to perform gradient ascent.

Mode collapse is when the generator learns to produce high-quality
samples with very low variability, covering only a fraction of the data
distribution.

The most common solution to mode collapse is the unrolled GAN.
The idea is to (move the generator forward) optimize the generator
w.r.t. the last k discriminators. This results in the above not being able
to occur, since the generator must not only fool the current discrimi-
nator, which might be unstable, but also the previous k ones.

Training instability Since we optimize GANs as a two-player game,
we need to find a Nash-Equilibrium, where, for both players, moving
anywhere will only be worse than the equilibrium. However, this can
lead to training instabilities, since making progress for one player may
mean the other player being worse off.

Optimizing Jensen-Shannon divergence. It might be the case that the
supports of pdata and pmodel are disjoint. In this case, it is always pos-
sible to find a perfect discriminator with D(x) = 1, ∀x ∈ supp(pdata)

and D(x) = 0, ∀x ∈ supp(pmodel). Then, the loss function equals zero,
meaning that there will be no gradient to update the generator’s pa-
rameters.

GAN objective can be generalized to an entire family of divergences.
The Wasserstein GAN optimizes the Wasserstein distance between pmodel

and pdata. In this case, the loss does not fall to zero for disjoint sup-
ports, because it measures divergence by how different they are hor-
izontally, rather than vertically. Intuitively, it measures how much
“work” it takes to turn one distribution into the other.

Gradient penalty. To stabilize training, we can add a gradient penalty,

V(G, D) = Ex∼pdata

[
log D(x) + λ∥∇D(x)∥2

]
+Ex∼pmodel [log(1−D(x))].

machine perception 47

9 Diffusion Models

In Diffusion Models, we split up the generation process into multiple
smaller steps. It can be regarded as a chain of steps. We start with an
image that purely of noise and, in each step of that chain we want to
partially denoise it.

• Denoising is the process of going from random noise to an image
• Diffusion is the process of going from an image of random noise.

The steps are deterministic, and each step adds some noise to the
current version of the image.

The notation is to call the real image x0 and the noisy sample xt. In
particular, we have x0 ∼ q(x0) where q(x0) is the original data distri-
bution, and xT ∼ N (0, I) is a sample from the Gaussian image. We
call xt the image at the t-th step of the diffusion chain with large t
corresponding to noisier images. in practice, we model the chain as a
Markov stochastic process {xt}T

0 , thus each step only depends on the
one immediately before it.

9.1 Diffusion Step

To generate training data for our Diffusion Model we need to perform
the diffusion process mapping real images to random noise. The pro-
cess is done in the following way.

Each diffusion step q(xt|xt−1) adds Gaussian noise to the previous
image xt1 obtaining xt. Doing that, we produce a sequence of T noisy
samples x1, . . . , xT . The amount of noise introduced at each step is
controlled by a variance schedule {β ∈ (0, 1)}T

t=1 such that 0 < β1 <

βT < 1. In particular, we compute q(xt|xt−1) is computed as

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (187)

However, this definition is sequential: we have to generate each step
on top of the previous one. So, we cannot parallelized it. Conversely,
we would like a formulation that, given a time step t, and an original
image x0 that can generate the image xt directly.

To derive the closed-form solution of xt, we first use the reparame-
terization trick to write the noisy image at time step t as:

xt =
√

1− βtxt−1 +
√

βtϵ (188)

where ϵ ∼ N (0, I). Now lets define αt = 1− βt and ᾱt = ∏t
i=1 αi. We

machine perception 48

can now obtain

xt =
√

αtxt−1 +
√

1− αtϵ (189)

=
√

αtαt−1xt−2 +
√

1− αtαt−1ϵ (190)

= . . . (191)

=
√

ᾱtx0 +
√

1− ᾱtϵ (192)

As a result, we can directly compute the noise sample as

q(xt|x0) = N (
√

ᾱtx0, (1− ᾱt)I) (193)

which drastically speeds up the process of training data generation.

There are mainly two different ways to define the β scheduler:
a linear schedule and a cosine schedule. The problem with the
linear scheduler is the image becomes pure noise too quick and
makes it hard for the model to learn. For this reason, a cosine
schedule is usually preferred.

9.2 Denoising Step

The process we want to learn is denoising, which allows us to trans-
form an image sampled from random noise into a realistic one. In
practice, we need to learn p(xt|xt−1), which perform the denosing step
from xt to xt−1. As these steps are in practice very small, p(xt|xt−1) is
a small transformation which can be easily approximated by a neural
network pΘ(xt|xt−1).

By definition, q(xt−1|xt) is a Gaussian distribution with known pa-
rameters. For small enough forward/diffusion steps, i.e. if β is small
enough, q(xt−1|xt) will also be Gaussian so we can parameterize it as:

pΘ(xt|xt−1) = N (µΘ(xt, t), ΣΘ(xt, t)) (194)

Here similary to VAEs, instead of trying to predict the full distribution,
we only need to predict the parameters of the Gaussian distribution.
There are only two denoising models, one for the mean µΘ(xt, t) and
one for the variance ΣΘ(xt, t). 10 To generate, we 10 Each of them take in the noisy image

xt and the timestep t.
1. Randomly sample some Gaussian noise xt

2. Iteratively denoise it until we get x0, a sample from the approxi-
mated real distribution. Since this is a Markov Chain, we can define
pΘ(x0:T) as

pΘ(x0:T) = p(x0)
T

∏
t=1

pΘ(xt−1|xt) (195)

where p(xt) ∼ N (0, 1) and pΘ(xt−1|xt) ∼ N (µΘ(xt, t), ΣΘ(xt, t))

machine perception 49

Reverse Distribution in Diffusion Models We now show that the denois-
ing distribution in diffusion models is Gaussian when conditioned on
clean data. More specifically, let x0 ∼ q(x0) be the data and assume we
define a Gaussian diffusion process via q(xt|xt−1) = N (

√
1− βtxt−1, βtI).

Define αt = 1− βt and ᾱt = ∏t
i=1 αi. Specifically, we want to show

q(xt−1|xt, x0) is given by N (µq(xt, x0), σ2
q I).

Proof. We start by Bayes’ theorem for q(xt|xt−1, x0) and ignore the
terms that do note depend on xt−1

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
∝ q(xt|xt−1, x0)q(xt−1|x0)

(196)
We notice this is a product of two Gaussians, however note the
first one is in terms of xt and the second one is in terms of xt−1,
so we cannot directly use any formulas for product of Gaussians.

q(xt−1|xt, x0) = N (
√

1− βtxt−1, βtI) · N (
√

ᾱtx0, (1− ᾱtI)) (197)

Now, we want to show that the product indeed does take the
following form

q(xt−1|xt, x0) = N (µq(xt, x0), σ2
q I) ∝ exp{−

∥xt − µq(xt, x0)∥2

2σ2
q

}

(198)
So we try to match the terms

q(xt−1|xt, x0) ∝ exp{
∥xt −

√
1− βtxt−1∥2

−2βt
} exp{∥xt−1 −

√
ᾱtx0∥2

−2(1− ᾱt)
}

(199)
Expanding the square first term

exp

{
−

x2
t − 2

√
1− βtxt−1xt + (1− βt)x2

t−1
2βt

}
(200)

Second Term

exp

{
−

x2
t−1 − 2

√
ᾱtx0xt−1 + ᾱtx2

0
2(1− ᾱt)

}
(201)

So we can match the terms. Notice that a = 1, b = −1, c = 1 of
of a quadratic ax2 + bxy + cy2 and so we can see which terms are
"matching" or "left over"

1
σ2

q
=

1
1− ᾱt−1

+
1− βt

βt
(202)

=
1− ᾱt

βt(1− ᾱt−1)
(203)

machine perception 50

So

σ2
q =

βt(1− ᾱt−1)

1− ᾱt
=

(1− αt)(1− ᾱt−1)

1− ᾱt
(204)

And for the mean we have (matching cy2)

µq(xt, x0)

σ2
q

=

√
1− βtxt

βt
+

√
ᾱt−1x0

1− ᾱt−1
(205)

So

µq(xt, x0) =
(1− ᾱt−1)

√
αtxt + (1− αt)

√
ᾱt−1x0

1− ᾱt
(206)

9.3 ELBO for Diffusion Models

Objective function ELBO Similar to VAE, we can rely on a lower bound
(ELBO) to optimize log-likelihood.

log p(x) = log
∫

p(x0:T)dx1:T (207)

= log
∫ p(x0:T)q(x1:T |x0)

q(x1:T |x0)
dx1:T (208)

= log Eq(x1:T |x0)

[
p(x0:T)

q(x1:T |x0)

]
(209)

≥ Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:T |x0)

]
(210)

Where in the last step, we used Jensen’s inequality. Now using the
chain rule, we notice that q(x1:T) = q(x1)q(x2|x1)q(x3|x2, x1) . . . q(xT |xT−1, . . . , x1).
Because the diffusion step is Markovian, each conditional at time t only
depends on previous timestep t− 1, hence, q(x1:T) = q(x1)q(x2|x1)q(x3|x2) . . . q(xT |xT−1).
Thus, the conditional term is

q(x1:T |x0) = q(x1|x0)
T

∏
t=2

q(xt|xt−1, x0) (211)

We assume a Markovian structure for the denoising distribution, so

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt) (212)

machine perception 51

This results in

log
pθ(x0:T)

q(x1:T |x0)
= log

p(xT)∏T
t=1 pθ(xt−1|xt)

q(x1|x0)∏T
t=2 q(xt|xt−1, x0)

(213)

= log

[
pθ(xT)pθ(x0|x1)

q(x1|x0)

T

∏
t=2

pθ(xt−1|xt)

q(xt|xt−1, x0)

]
(214)

= log
pθ(xT)pθ(x0|x1)

q(x1|x0)
+

T

∑
t=2

log
pθ(xt−1|xt)

q(xt|xt−1, x0)
(215)

Hence,

Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:T |x0)

]
= Eq(x1:T |x0)

[
log

pθ(xT)pθ(x0|x1)

q(x1|x0)
+

T

∑
t=2

log
pθ(xt−1|xt)

q(xt|xt−1, x0)

]
(216)

Now, we use Bayes’ Theorem.

q(xt|xt−1, x0) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)
(217)

Therefore,

T

∑
t=2

log
pθ(xt−1|xt)

q(xt|xt−1, x0)
=

T

∑
t=2

log
pθ(xt−1|xt)q(xt−1|x0)

q(xt−1|xt, x0)q(xt|x0)
(218)

=
T

∑
t=2

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
+ log q(xt−1|x0)− log q(xt|x0)

(219)

Notice the last two terms log q(xt−1|x0), log q(xt|x0) periodically cancel
each other. This results in

Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:T |x0)

]
= Eq(x1:T |x0)

[
log

pθ(xT)pθ(x0|x1)

q(x1|x0)
+

T

∑
t=2

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
+ log q(x1|x0)− log q(xT |x0)

]
(220)

= Eq(x1:T |x0)

[
log

p(xT)

q(xT |x0)
+ log pθ(x0|x1) +

T

∑
t=2

log
pθ(xt−1|xt)

q(xt−1|xt, x0)

]
(221)

So by definition of KL divergence we have

log p(x0) ≥ Eq(x1|x0)
[log pθ(x0|x1)]︸ ︷︷ ︸

Reconstruction Term

−DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸
Prior Matching Term

−
T

∑
t=2

Eq(xt |x0)

[
DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)︸ ︷︷ ︸
Denoising Matching Term

]
(222)

machine perception 52

9.4 Training

1: while not converged do
2: x0 ∼ q(x0)

3: t ∼ Uniform({1, . . . , T})
4: perform a gradient descent step on

∇Θ∥ϵ− ϵΘ(
√

ᾱtx0 +
√

1− ᾱtϵx0, t)∥2

5: end while

Algorithm 2. Diffusion Training Algo-
rithm with Gradient Descent

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: Given σ2

t = βt

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+ σtz

5: end for
6: return x0

Algorithm 3. Diffusion Training Algo-
rithm with Gradient Descent

9.5 Guidence

So far we modeled only the data distribution p(x). However, we of-
ten also require the conditional distribution p(x|y) which enables the
explicit control over the generated data. In practice, we would like to
sample from a distribution from

pΘ(x0:T |y) = p(xT)
T

∑
t=1

pΘ(xt−1|xt, y) (223)

where y is a conditioning variable such as an image generated with
DALL-E 2 giving in input the caption: “An astronaut riding a horse
in a photorealistic style.” The tool used for conditioning on images is
called CLIP.

CLIP CLIP is a large image-language model trained and distributed
by OpenAI. It has been trained on a dataset of paris one consisting of
an image and its textual description. CLIP consists of two encoder net-
works, one encodes images while other encodes textual caption. With
a contrastive loss, CLIP is encouraged to encode an image and its cap-
tion into similar embedding vectors. One of the possible applications
of CLIP is Zero-Shot classification, which leverages the CLIP model to
predict the class of an image without any training, by predicting the
classes that maximizes the cosine similarity between the image and the
class name.

machine perception 53

Classifier Guidance We can guide a diffusion model via Classifier Guid-
ance. The idea is to guide denoising in a direction favouring images
that are more reliably classified. To do that, we need a pre-trained
unconditional diffusion model and a classifier trained from scratch on
noisy images. Then, we inject gradients of the classifier model into
sampling process.

Even if intuitively this direction seems reasonable, in practice it
counts some limitations. First, it requires a specific classifier trained on
noisy data, as we want to guide the generation during all the levels of
noise of the process. Second, it is hard to interpret what the classifier
guidance is doing.

Classifier-Free Guidance Jointly train class-conditional and uncondi-
tional diffusion models and to guide the generation process in the
direction of conditioning

ϵ∗Θ(x, c; t) = (1 + ρ) ϵΘ(x, c; t)︸ ︷︷ ︸
Conditional

− ρϵΘ(x; t)︸ ︷︷ ︸
Unconditional

(224)

where c is the conditioning variable (usually a text’s CLIP encoding)
and ρ is a hyperparameter that controls the strength of the guidance.
In practice, we usually train a single model ϵΘ(x, c, ; t) and just set
conditioning variable c to zeros for the unconditional generation.

Classifier-Free Guidance is in practice easier to implement since it
does not rely on the training of any additional classification model.
However, the generation is twice slower when compared to the Clas-
sifier Guidance, at each step it has to run both the conditional and
the unconditional generation. From an overall perspective, guidance
improves fidelity (how good/convincing the image looks) but reduces
the diversity of the generated images.

machine perception 54

Part III

Deep Learning for Computer
Vision

10 Implicit Surfaces and Neural Radiance Fields

The universal approximation theorem tells that neural networks are able
to learn an approximation of any continuous function. Thus, as a 3D
shape is a continuous function, we should not be surprised that neural
networks are able to solve it.

Voxels Voxels are 3D correspondent of pixel, a democratization of 3D
space into grid. It occupies cubic memory O(n3), thus resolution is
limited.

Points or Volumetric Primitives These are discretization of surface into
3D points. However, it does not model connectivity / topology.

Meshes Discretization into vertices and faces. Requires discretization
into vertices or faces. Requires either class-specific templates or the
maximum number of vertices to represent it. There will always be an
approximation error and they lead to self-intersections.

Implicit functions Learns the analytic function which represents the
3D-surface. There are no approximation error thus smooth and con-
tinuous surface. However, a graphical visualization is not directly
applicable, unless we convert them to aforementioned explicit repre-
sentation. In any case, it is hard to obtain high frequency details.

10.1 Neural Implicit Surface Representation

Represent surface as the level-set of a continuous function. The form
is

f (x) = x2
1 + x2

2 + x2
3 − r2 (225)

S = {x| f (x) = 0} (226)

These are two kind of function that can do this work:

• Occupancy Networks: fθ : R3 ×X 7→ [0, 1] outputs the probability
of being inside the surface.

machine perception 55

• DeepSDF (Signed Distance Field): fθ : R3 × X 7→ R output the
signed distance from the surface (negative if inside, positive if out-
side).

Pros

• The representation is continuous
• We obtain an arbitrary topology and resolution
• Low memory footprint

10.2 Implementation of Neural Implicit Surface Representations

The implicit function fθ is parameterized as an MLP. We condition over
the type of shapes we want to obtain via input concatenation. The
output can be both occupancy probability or Signed Distance Field.
In order to obtain an explicit representation, we then use marching
cubes.11 In general, we can choose one of these three representations 11 Converts the implicit function repre-

sentation to a mesh for visualization. Ex-
tracts a polygonal mesh from the contin-
uous function by evaluating the function
on a grid and connecting points with iso-
surfaces.

as ground truth to learn the function f .

• Watertight Meshes
• Point Clouds
• 2D Images

Watertight Meshes This is the simplest case (they have no holes thus
the space is divided in inside and outside): we can uniformly sample
points inside the surface and we train the model using BCE:

L(θ, ϕ) =
K

∑
j=1

BCE(fθ(pij, zi), oij) (227)

Point Clouds Point clouds are a collection of data points defined in a
three-dimensional coordinate system. These points represent the ex-
ternal surface of an object or a scene in 3D space and are commonly
used in various fields such as computer graphics, computer vision,
and robotics.

• Representation: A point cloud is represented by a set of points,
each defined by its x, y, z coordinates. Optionally, each point can
also carry additional information such as color, intensity, or normal
vector (indicating surface orientation).

• Generation: Point clouds are often generated by 3D scanning de-
vices such as LiDARs, laser scanners, and depth cameras. They
can also be created from photogrammetry, where 3D structure is
inferred from multiple 2D images.

• Data Structure: Typically stored as lists or arrays of points (x, y, z)

machine perception 56

We use this representation sometimes because:

• Many 3D sensors output unordered point clouds
• Generally, they are cheaper to obtain than watertight meshes

Input: points cloud X = {xi}i∈I ⊂ R3. In this case the implicit func-
tion represents the signed distance function to a plausible surfaceM
define by X since learning only from points would be hard. Therefore,
the loss we wish to minimize is

L(θ) = ∑
i∈I
| fθ(xi)|2︸ ︷︷ ︸

Vanish Term

+ λEx(∥∇x fθ(x)∥ − 1)2︸ ︷︷ ︸
Eikonal Term

(228)

Where we want the loss to vanish at training points, hence the Vanish
term. We want the spacial gradient at surface points to be 1, so we can
interpret it as a geometric surface (we do not want sudden changes in
the norm of the gradient), encourages smoothness defined by Eikonal
term.

Convergence and Linear Reproduction
Gradient descent of the linear model with random initialization
converges with probability 1 to the reproducing plane.

2D Images Now suppose we want to construct a 3D representation
with only 2D images (no more 3D supervision). In order to learn
from them we need to render them in a differentiable way. We achieve
this via Differentiable Volumetric Rendering. We quickly review the
Secant Method.

Scecant Method
In order to find the points which lay on the surface, we use the
secant method. The idea is to start from 2 points x0, x1 and connect
them with a striaght line. Find the intersection of this line with
the x-axis, call this point x2. Repeat this until convergence using
point with opposite signs.

Consider the line
(

x0, f (x0)
)
→
(

x1, f (x1)
)

:

y2 =
f (x1)− f (x0)

x1 − x0
(x2 − x1) + f (x1) (229)

The root of the function y2 = 0 is:

x2 = x1 − f (x1)
x1 − x0

f (x1)− f (x0)
(230)

Iteratively applying this rule yields the secant method which is a
finite-difference approximation of Newton’s method.

machine perception 57

Now we can move to the forward pass (rendering).

Differentiable Volumetric Rendering
Our goal is to learn fθ (occupancy function) and tθ (texture) from
2D image observations. Consider a single image observation. We
define a photometric reconstruction loss

L(I, Î) = ∑
u
∥ Îu − Iu∥ (231)

where I is the observed image (Ground Truth) and Î is rendered
by our implicit model. Moreover, Iu denotes the RGB value of the
observation I at pixel u and ∥ · ∥ is a (robust) photo-consistency
measure such as the ℓ1-norm.

To minimize the reconstruction loss L w.r.t the network param-
eters θ using gradient-based optimization techniques, we must be
able to

• Render Î given fθ (fθ = τ if the point is in the surface, > τ if
the point is behind and < τ if it is outside) and tθ

• Compute gradients of gL w.r.t. the network parameters θ

To obtain the rendering, we follow this procedure. Given r0, the
position of the camera, for each pixel u:

1. Draw w, a vector connecting r0 to u
2. Consider the ray r(d) = r0 + dw
3. Call p̂ the first point of intersection (where fθ(p̂) = τ, found

with Secant Method) with the estimated surface in the direction
of r(d). Call d̂ the distance of this point from r0, in particular,
we know that r(d̂) = p̂

4. Query the texture network and obtain tθ(p̂)
5. Colour the pixel u with colour tθ(p̂).

Now lets introduce the backward pass. Lets call I the real image
and Î the predicted one where we define the loss as L(Î, I) = ∑u ∥ Îu−
Î∥. The gradient of the loss w.r.t our parameters will be

∂L
∂θ

= ∑
u

∂L
∂ Îu

∂ Îu

∂θ
(232)

where
∂ Îu

∂θ
=

∂tθ(p̂)
∂p̂

∂p̂
∂θ

(233)

In order to evaluate ∂p̂
∂θ we need implicit differentiation.

Consider the ray p̂ = r0 + d̂w and condition for the intersection
between the ray and the surface (remember that we evaluate the colour

machine perception 58

of a point only for the points on the surface) and take the derivative
on both sides.

fθ(p̂) = τ (234)

∂ fθ(p̂)
∂θ

+
∂ fθ(p̂)

∂p̂
∂p̂
∂θ

= 0 (235)

∂ fθ(p̂)
∂θ

+
∂ fθ(p̂)

∂p̂
·w ∂d̂

∂θ
= 0 (236)

∂d̂
∂θ

= −
(∂ fθ(p̂)

∂p̂
·w
)−1 ∂ fθ(p̂)

∂θ
(237)

As p̂ = r0 + d̂w we have that

∂p̂
∂θ

= w
∂d̂
∂θ

(238)

= −w
(∂ fθ(p̂)

∂p̂
·w
)−1 ∂ fθ(p̂)

∂θ
(239)

10.3 NEural Radiance Field (NERF)

So far we have learnt how to represent surfaces, but in some cases this
is not enough, scenes are more complex. In particular, we have to learn
thin structures (e.g. leaves, hair), transparency (e.g. glasses, smoke).

Compared with implicit surfaces, they can model transparency
and thin structure, and therefore is a more flexible representation.
However, it generally leads to worse geometry compared to im-
plicit surface.

Figure 7. NERF architecture

Architecture Before we were interested in one single output, the RGB
value of a pixel. The novelty of NERF is that they introduce the concept
of density σ which enables us to learn more about difficult surfaces.
In particular, the input is x, y, z: The 3D position of the point we are
considering and θ, ϕ: the camera parameters. The output is σ, the
density of the point and c, the RGB value of the point. Note that the
view directories θ and ϕ are given to the network only in later layers,

machine perception 59

after having predicted σ to enforce this value not to be dependent on
ϕ, θ, but just from x, y, z. After some layers we are given again the
position x, y, z to the network to make sure it has not been washed
out.

Procedure We want to analyze how we can obtain the volume render-
ing. The first step is to draw a ray connecting the camera position to
the point we want to represent. However, we now analyze the whole
ray sampling points along it, without stopping at the first intersection
with the surface. The parameters we analyze are

• The density σ

• The transmittancy Ti = ∏i−1
j=1(1− αi)

In order to get the colour we apply alpha compositing. To better
understand the process, consider the following formula:

δi = ti+1 − ti (240)

αi = 1− exp{−σiδi} (241)

The final colour will be the weighted average of the colours along the
way

c =
N

∑
i=0

TIαici (242)

Since the sampling operation is very expensive, one trick is to sample
more n more significant positions (i.e. positions with high weights
(high Tiαi)).

Positional Encoding Despite the fact that neural networks are universal
function approximators, having the network FΘ directly operate on
x, y, z, θ, ϕ input coordinates result renderings that perform poorly at
representing high-frequency variation in colour and geometry. This
happens because neural networks are biased towards learning lower
frequency function.

Solution to poor high-frequency variation
Introduce positional encoding, mapping the inputs to a higher
dimensional space R2L and then applying the MLP function. For-
mally, define the encoding function used is

γ(p) =
[

sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp)
]

(243)

This function γ(·) is applied separately to each of the three
coordinate values in x (which are normalized to lie in [−1, 1]) and
to the three components of the Cartesian viewing direction unit

machine perception 60

vector d (which by construction lie in [−1, 1]). In the original
NERF paper experiments, we set L = 10 for γ(x) and L = 4 for
γ(d).

A similar mapping is used in the popular Transformer archi-
tecture, where it is referred to as a positional encoding. However,
Transformers use it for a different goal of providing the discrete
positions of tokens in a sequence as input to an architecture that
does not contain any notion of order. In contrast, we use these
functions to map continuous input coordinates into a higher di-
mensional space to enable our MLP to more easily approximate a
higher frequency function. Concurrent work on a related problem
of modeling 3D protein structure from projections also utilizes a
similar input coordinate mapping.

Limitations of NERFs

• Requires many (50+) calibrated views
• Slow rendering speed for high-res images
• Only models static scenes

10.4 Gaussian Splatting

The input to this method is a set of images of a static scene together
with the corresponding cameras calibrated by SfM which produces a
sparse point cloud as a side-effect. From these points, we create a
set of 3D Gaussians defined by a position µ, covariance matrix Σ and
opacity α that allows a very flexible optimization regime. This results
in a reasonably compact representation of the 3D scene.

Optimization starts with the sparse SfM point cloud and creates a
set of 3D Gaussians. Then, we optimize and adaptively control the
density of this set of Gaussians. During optimization, we use our
fast ti-ebased render, allowing competitive training times compared to
SOTA fast radiance field methods. Once trained, the renderer allows
real-time navigation for a wide variety of scenes.

Differentiable Rasterization of 3D Gaussians (splatting)

• For each pixel (in practice, approximated by tile-based sorting), sort
all Gaussians according to their depth.

• Calculate the opacity of each Gaussian

α = o · exp(−0.5(x− µ′)⊤Σ′−1(x− µ′)) (244)

machine perception 61

• Use volume rendering equation, similary to NeRFs

C = T1α1c1 + T2α2c2 + T3α3c3 (245)

where T1 = 1 and T2 = 1− α1, etc.

machine perception 62

11 Parametric Human Body Models

2D human pose representation and estimation consists on two main
fields of study that should be combined:

• Body modeling
• Feature representation learning

We will first analyze them separately and then we will understand
how to combine them efficiently.

11.1 Body Modeling

Body modeling aims to find a way to understand how the different
parts of the body are linked to each other. Pictorial Structure Model,
which will be explained below, comes up with a graph based solution.

Pictorial Structure Model We describe the human body model as a
graph G = (V, E) where:

• V = (1, . . . , k) are vertices to represent k parts of the human body
• E are edges to specify which pairs of parts are constrained to have

consistent relations

Given an 2D image I, we indicated li = (xi, yi) the estimated po-
sition of a vertex i in a 2D plane. Thus, given an image I and
a configuration estimate L = (l1, . . . , lk), which contains position
estimations for each vertex, we can define a score as follows.

S(I, L) = ∑
i∈V

αi · ϕ(I, li) + ∑
i,j∈E

βij · ψ(li, lj) (246)

where ϕ(I, li) is a unary term which measures the mismatch with
the original image when the vertex is placed in the location li and
ψ(li, lj) measures the deformation between the connected points i
and j when i is placed in li and j is placed in lj.

Pictorial Structure Model with Flexible Mixtures It has been proved em-
pirically that a mixture of non-oriented pictorial structures can outper-
form explicitly articulated parts because mixture models can capture
orientation-specific statistics of background features. Thus, we modify
the framework previously discussed introducing the concepts of mix-
ture models. Let mi be the type (mixture component) of the part i.
The mixture component can express many concepts as orientations of
a part (vertical versus horizontally oriented hand), but types may span
out-of-plane rotations (front-view head versus side-view head) or even
semantic classes (an open versus closed hand).

machine perception 63

Formally, the score becomes

S(I, L, M) = ∑
i∈V

α
mi
i · ϕ(I, li) + ∑

i,j∈E
β

mi ,mj
ij · ψ(li, lj) + S(M) (247)

where α
mi
i is the local appearance template for part i with type

assignment mi, β
mi ,mj
ij is the spatial spring parameter for pair of

types (mi, mj). It expresses the likelihood of having template mi

for part i and template mj for part j given the distance between li
and lj. S(M) is the co-occurence bias and is defined as

S(M) = ∑
ij∈E

b
mimj
ij (248)

where bij is the pairwise co-occurrence prior between part i with
mixture type mi and j with mixture type mj and it favours partic-
ular co-occurrences of part types.

11.2 Feature Representation Learning

We will explore Direction Regression and Heatmaps for feature represen-
tation learning.

Direct Regression Direct Regression is based on deep convolutional
neural networks. The idea is to directly regress x and y coordinates
and it involves a refiner.

Heatmaps For heatmaps-based representation learning we refer to Con-
volutional Pose Machines. The objective is to improve performance of
human pose estimation when occlusions are present. The main idea is
to create seperate heatmaps (Gaussian distribution around keypoints)
for each keypoint, and then combining them only in the last phase.
The key is that at every stage, the architecture operates both on image
evidence as well as belief maps from preceding stages. In each stage,
the computed beliefs provide an increasingly refined estimate for the
location of each part.

11.3 3D Human Pose Representation and Estimation

SMPL representation: 3D Mesh In order to represent the body in 3D,
we use a 3D mesh that is designed by an artist and contains around
7000 vertices. In order to define a body we need to define its shape
and pose.

Shape In order to define the shape, we do PCA of meshes in canonical
pose to estimate the directions of maximal shape variation. Doing that,

machine perception 64

we obtain a low-dimensional subspace (10D - 300D) in the canonical
pose. Usually 10 dimensions are enough to define a pose.

Pose: Linear blend skinning The linear mesh skinning is the simplest
mesh skinning method. Linear blend skinning is the idea of transform-
ing vertices inside a single mesh by a (blend) of multiple transforms.
Deformed position of a point (vertex) is a sum of the positions de-
termined by each bone’s transform alone, weighted by that vertex’s
weight for that bone. In particular, for each vertex i, starting from a
rest position ti, its position in the transformed pose t′i is

t′i = ∑
k

wki
Gk(θ, J)ti (249)

where wki
are the blend skinning weights, created by an artist. Gk

is a rigid bone transformation, θ is the desired pose, J are the joint
locations. Thus, posed vertices are linear combination of transformed
template vertices. It is simple fast to compute, but it produces only
well known artifacts.

Pose: SMPL A solution to the above problem is SMPL, where t′i is
computed as

t′i = ∑
k

wkiGk(θ, J(β))(ti + si(β) + pi(θ)) (250)

where si(β) is the vertex i in Bs(β), which represents offset from the
template depending on the shape described by β. pi(θ) is the vertex i
in BP(θ), which represents offset from the template depending on the
pose described by θ.

Shape blend shapes BS These are the body shapes of different people
represented by a linear function BS

BS(β,S) =
|S|

∑
n=1

βnSn (251)

where β = [β1, . . . , β|β|]
⊤ are the linear shape coefficients, Sn ∈ R3N

are the orthonormal principle components of shape displacements,
S = [S1, . . . S|β|] is the matrix of all shape displacements learned from
registered training meshes. Notationally, the values to the right of a
semicolon represent learned parameters, while those on the left are
parameters set by an animator.

Pose blend shapes BP We denote R : R|θ| 7→ R9K a function that maps a
pose vector θ to a vector of concatenated part relative rotation relative
rotation matrices (each rotation matrix has dimensions 3× 3). Given

machine perception 65

that our rig has 23 joints, we have that K = 3 and thus R(θ) is a
vector of length 23× 9 = 207. Elements of R(θ) are functions of sines
and cosines of joint angles and therefore R(θ) is non-linear with θ. If
we define θ∗ as the rest pose, the the vertex deviations from the rest
template are

BP(θ,P) =
9K

∑
n=1

(Rn(θ)− Rn(θ
∗))Pn (252)

where Pn ∈ R3N are the vector of vertex displacements. Thus, P =

[P1, . . . P9K] ∈ R3N×9K is a matrix of all 207 pose blend shape.

As a consequence of this formula, the rotation of a particular joint
can influence all the body vertices, not only the local ones.

As a result, we obtain a mesh M(β, θ, ϕ) which depends on β

(shape), θ (pose), ϕ (gender) and the joints position J(β;J , T̄,S).

machine perception 66

Part IV

Reinforcement Learning

12 Reinforcement Learning

In Reinforcement Learning (RL) models learn how to act interacting
with the environment trough some actions. This can be useful in
many fields such as games, logistics and operations and Robot Con-
trol/Computer Vision. Reinforcement Learning is a problem, not a
method. Given an unknown and uncertain environment, it aims to
choose the right actions in order to maximize the reward signal in the
long-term.

An RL agent may include one or more of these components:

Policy A policy expresses the agent’s behaviour, it is a map from
states to action. It can be:

• Deterministic: π(s), it returns the precise action to do given a state
s ∈ S

• Stochastic π(a|s) = P(a|St = s) it returns the probability of doing
the action a in the state s

There are three types of RL agents.

Value Based The agent has access to the value function. Given a value
function, we can derive a greedy policy by reading the value function
and maximizing the best action.

Policy Based The agent have just access to a policy and try to adjust
this policy directly to get the highest possible reward.

Model-free and model-based agents Model-free directly optimize value/pol-
icy function while model-based first builds a model how the enviro-
ment works and then finds the optimal way to behave.

12.1 Markov Decision Processes

Markov Decision Processes (MDPs) formally describe an enviroment
for reinforcement learning where the enviroment is fully observable.

Markov Property The future is independent of the past given the present.

machine perception 67

A state St is Markov if and only if

P[St+1|St] = P[St+1|S1, . . . , St] (253)

As a consequence, the state captures all relevant information from
the history. Once the state is known, the history may be thrown away.

A Markov Process (or Markov Chain) is a tuple ⟨S ,P⟩ where

• S is a (finite) set of states
• P is a state transition probability matrix, where Pss′ = P[St+1 =

s′|St = s]

A Markov Reward Process is a tuple ⟨S ,P ,R, γ⟩ where

• R is a reward function Rs = E[Rt+1|St = s]

• γ ∈ [0, 1] is a discount factor, where γ close to 0 leads to myopic
evaluation and close to 1 leads to far-sighted evaluation.

Return Gt is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + · · · =
∞

∑
k=0

γkRt+k (254)

Markov Decision Process is a tuple ⟨S ,A,P ,R, γ⟩ where

• S is the set of states
• P is the set of actions
• R is a reward function r : S ×A 7→ R (deterministic or distri-

bution)
• P is a transition function p : S × A 7→ S (deterministic or

distribution)
• s0 ∈ S is an initial state
• γ is a discount factor

machine perception 68

Value Function The value function is a prediction of the expected fu-
ture reward. It is used to evaluate the goodness/badness of states. It
is the bases the agent uses to decide the next action. We now derive
the bellman equation12 for Vπ(s) 12

* is the probability of taking an action
given a state

** is the joint probability of next state
and the reward given the current
state and action. Transition Matrix.

*** is the expected reward given a new
state

vπ(s) = Eπ [Gt|St = s] (255)

= Eπ [Rt+1 + γGt+1|St = s] (256)

= ∑
a

π(a|s)︸ ︷︷ ︸
*

∑
s′

∑
r

p(s′, r|s, a)︸ ︷︷ ︸
**

(r + γEπ [Gt+1|St+1 = s′])︸ ︷︷ ︸

(257)

= ∑
a

π(a|s)∑
s′ ,r

p(s′, r|s, a)(r + γvπ(s′)) (258)

Action-value function The action-value function qπ(s, a) is the expected
return starting from state s, taking action a then following policy π

q(s, a) = Eπ [Gt|St = s, At = a] (259)

= Eπ [Rt+1 + γqπ(St+1, At+1)|St=s, At = a] (260)

Bellman Optimality Equation With this, we can have the Bellman Op-
timality Equation, which says v∗(s) is the maximum value function
over all policies.

v∗(s) = max
π

vπ(s) = max
a

q∗(s, a) = max
a ∑

s′
p(s′, r|s, a)(r + γv∗(s′))

(261)
Notice that this equation is not linear, has no closed form solution but can
be solved using many iterative solution methods such as DP, Monte-
Carlo Methods, Temporal-Difference Learning (combination of DP and
MC).

12.2 Dynamic Programming

Dynamic Programming (DP) is able to compute optimal policies given
a perfect model of the world (MDP). Thus, in order to apply DP we
need to know the transition probabilities. This has a limited utility, but
still has great theoretical importance. The two key ideas to compute
the optimal policy

• Value iteration: 1. Compute optimal v∗ using the value iteration
algorithm, 2. Find a policy π to obtain v∗

• Policy iteration: 1. For any policy π compute v(π), 2. Update policy
π given v(π) and obtain π′, 3. Iterate until π ∼ π′

machine perception 69

1: i← 0
2: V0 ← 0
3: while ∆ > θ do
4: ∆← 0
5: for s ∈ S do
6: v← V(s)
7: V(s)← maxa∈A ∑s′ ,r p(s′, r|s, a)[r + γV(s′)]
8: ∆← max(∆, |v−V(s)|
9: end for

10: end while
11: πi ← greedy policy from Vi

Algorithm 4. Value Iteration Algorithm

Value Iteration (Algorithm 4)
Pros:

• Exact Methods
• Policy/Value iteration are guaranteed to converge in finite num-

ber of iterations
• Value iteration is typically more efficient than policy iteration

Cons:

• Need to know the transition probability matrix
• Need to iterate over the whole state space (very expensive)
• Requires memory proportional to the size of the state space

12.3 Monte Carlo Methods

If the state space is too big to iterate over it and if we don’t know the
transition probabilities we can use the idea of Monte Carlo methods.
Monte Carlo policy evaluation uses empirical mean return instead of
expected return.

Vπ(st) = Eat∼π(st),st+1∼p(st ,at) ∑
i=0

γir(st+i, at+i) (262)

We can just run episodes with the given policy and compute samples
of the expression in the expectation:

∑
i=0

γir(st+i, at+i) (263)

12.4 Temporal Difference Learning

Temporal Difference (TD) learning allows learning from incomplete
episodes. We don’t have anymore to go all the way in a particular

machine perception 70

trajectory, TD can learn before knowing the final outcome, it learns
online at every step.

Intuitively, the procedure is the following:

1. Guess the reward of a certain trajectory
2. Go one step forward in that trajectory
3. Estimate again the reward from the new state
4. Come back and update the previous estimate of the initial state

More formally, for each step with action a from s to s′ that we take
with our policy, we compute the difference to our current estimate
and update our value function:

∆V(s) = r(s, a) + γV(s′)−V(s) (264)

V(s)← V(s) + α∆V(s) (265)

here α > 0 is the learning rate. The TD(0) learning is guaranteed to
converge to vπ(s), the real value. Observe that we don’t update the
whole state space, but only visited states! However, we still need to
find a criterion to visit the state space. There are two options:

• Random Policy: In each state, choose an action randomly
• Greedy Policy: In each state, always choose the best action

At a first glance, the greedy strategy may look better, but in practice
it could get us stuck in local minima. We need to find the balance
between

• Exploration: Gather more data to avoid missing out on a potentially
large reward?

• Exploitation: Stick with out current knowledge and build an opti-
mal policy for the data we’ve seen?

A good trade-off is the ϵ-greedy policy, where in each state, with a
small probability ϵ we choose greedy. Works well in practice, where we
decrease the value of ϵ so we have more exploration in the beginning.

On policy: Computes the Q-Value according to a policy and then
the agent follows that policy.

Off-Policy: Computes the Q-Value according to a greedy policy,
but the agent follows a different exploration policy.

There are to main major implementations of TDL.

machine perception 71

SARSA (On policy) We follow the policy π to obtain a transition s, a, r, s′

so we compute the difference to our current estimate and update our
value function as

∆Q(s, a) = Rt+1 + γQ(s′, a′)−Q(s, a) (266)

Q(s, a)← Q(S, A) + α∆Q(s, a) (267)

where α is the learning rate, and action a′ is chosen by π in the state
s′.

Q-Learning (Off-Policy) For each action A transitioning from S to S′,
compute the difference to current estimate and update the value func-
tion

∆Q(S, A) = Rt+1 + γ max
a
{Q(S′, a)} −Q(S, A) (268)

Q(S, A)← Q(S, A) + α∆Q(S, A) (269)

Pro and Cons of TD Learning Pros

• Less variance than Monte Carlo Sampling due to bootstrapping
• More sample efficient than Dynamic Programming
• Do not need to know the transition probability matrix

Cons

• Biased due to bootstrapping, we use "old" value estimates as labels
• Exploration/Exploitation dilemma

machine perception 72

13 Deep Reinforcement Learning

Recall that π : S 7→ A and vπ : St 7→ R are functions, and thus
can be approximated by a neural network. We use this idea (function
approximation) to learn the value function.

13.1 Deep Q-Learning

Recall that in Q-Learning, we assign a value at each pair (a, s), thus,
our goal is to use function approximation to learn the value function

vπ(s) ≈ vπ(s, θ) (270)

We can use a neural network to learn the mapping between state-action
pairs (s, a) and their values. The Q-learning update reduce to SGD on
the TD-error (∆Q)

L(θ) = (R + γ max
α′
{Qθ(s′, a′)} −Qθ(s, a))2 (271)

However, we still have a problem: SGD assumes that our updates are
i.i.d.. In RL, states visited in the trajectory are strongly correlated. To
address this, we use a replay buffer to store the generated samples.
The procedure for training will be

1. Run some exploration policies and, during them, store all the gen-
erated samples there.

2. When we have enough transitions, we sample a random minibatch
from the buffer

3. For every transition present in this minimatch, we update loss and
parameters

4. Iterate until convergence

13.2 Policy Search Methods

Q-learning is limited to discrete action spaces, for continuous action
space the problem is intractable. Policy search methods learn a policy
π directly and often much easier. The algorithm directly learns the
correct behavior, without exploring the value function.

Policy Gradients We can see the policy from a particular time step t
as a normal distribution of mean µt and variances σ2

t over the possible
actions, thus we use a Gaussian parameterization of the policy

π(at|st) ∼ N (µt, σ2
t) (272)

The advantage of this parametrization is that now we can sample from
there and learn the parameters of our network. In particular, if we

machine perception 73

want the probability of a particular trajectory τ we have to compute

p(τ) = p(s1, a1, . . . , sT , aT) = p(s1)
T

∏
t=1

π(at|st)p(st+1|at, st) (273)

Ideally, our objective is to make good trajectories more likely and bad
trajectories less likely. In order to do that, we sample from the Gaus-
sian parametrization of the policy and we learn our parameters to ob-
tain π(at|st, θ).

Training: Exploration and Evaluation The learning phase can be split
into two main parts:

• Exploration: Get the trajectory data. To do that, we sample action at
every time-step from the policy probability distribution (on-policy
methods)

• Evaluation: Evaluate the policy by computing the expectation of
the trajectory reward given the parameters θ

J(θ) = Eτ∼pθ(τ)

[
∑

t
γtr(st, at)

]
(274)

Optimization: Policy Update The goal is to maximize the performance
measure

θ∗ = argmax
θ

J(θ) (275)

In order to do that we update the parameters using gradient ascent:

θ ← θ +∇θ J(θ) (276)

First we rewrite J(θ) in a compact way

J(θ) = Eτ∼pθ(τ)

[
∑

t
γtr(st, at)

]
(277)

= Eτ∼pθ(τ)
[r(τ)] (278)

=
∫

p(τ)r(τ)dτ (279)

Now we can compute the gradient and using the fact ∇ log(f (x)) =
∇ f (x)

f (x)

∇θ J(θ) =
∫
∇θ p(τ)r(τ)dτ (280)

=
∫

p(τ)∇θ log p(τ)r(τ)dτ (281)

= Eτ∼pθ(τ)
[∇θ log p(τ)r(τ)] (282)

machine perception 74

Lets write log p(τ) as

log p(τ) = log p(s1, a1, . . . , sT , aT) (283)

= log

[
p(s1)

T

∏
t=0

log πθ(at|st)p(st+1|at, st)

]
(284)

= log
[

p(s1)
]
+
[T

∑
t=0

log πθ(at|st)
]
+
[T

∑
t=0

log p(st+1|at, st)
]

(285)

The first and last term do no depend on the policy we choose, and
thus do not depend on the parameters θ of our neural network. Thus,
when we apply ∇θ they will be constants and become 0. Hence13, 13 We use the fact r(τ) = ∑T

t=0 γtr(st, at)

∇θ J(θ) = Eτ∼pθ(τ)
[∇θ log p(τ)r(τ)] (286)

= Eτ∼pθ(τ)

[
∇θ

[T

∑
t=0

log πθ(at|st)
]
r(τ)

]
(287)

= Eτ∼pθ(τ)

[(
∇θ

T

∑
t=0

log πθ(at|st)
)(T

∑
t=0

γtr(st, at)
)]

(288)

To compute the expectation in practice, we use the REINFORCE algo-
rithm.

REINFORCE

1. Initialize the policy parameters θ at random.
2. Use this policy πθ to collect a trajectory τ = (s0, a0, r1, s1, a1, . . . , aH , rH+1, sH+1)

3. Calculate the discounted reward for each step k by backpropagation

Gk =
H+1

∑
t=k+1

γt−k−1Rk = Rk + γGk+1 (289)

4. Calculate the expected reward J and ∇Jθ using Monte Carlo sam-
pling (we sample N trajectories):

∇θ J(θ) =
1
N

N

∑
i=1

[(T

∑
t=0
∇θ log πθ(ai

t|si
t)
)

Gi
0

]
(290)

5. Adjust the weights of the policy to increase J

θ ← θ +∇θ J(θ) (291)

6. Iterate until convergence

REINFORCE with baseline REINFORCE has the problem of its gradi-
ent is estimated over only a few samples (we used Monte Carlo sam-
pling), this the obtained policy gradients are very noisy. The solution

machine perception 75

is to reduce the variance by introducing a baseline b(si
t) in the term

related to the trajectory reward.

∇θ J(θ) = Eτ∼pθ(τ)

[(
∇θ

T

∑
t=0

log πθ(at|st)
)(T

∑
t=0

γtr(st, at)− b(si
t)
)]
(292)

Note that the baseline must be a function that does not depend on
the policy. As a consequence variance is reduced, but the policy gradient
estimate remains unbiased.

	I Foundations of Deep Learning
	Neural Networks
	Training Neural Networks
	Convolutional Neural Network
	Recurrent Neural Network

	II Generative Models
	Autoencoders
	Autoregressive models
	Normalizing Flows and Invertible Neural Networks
	Generative Adversarial Networks
	Diffusion Models

	III Deep Learning for Computer Vision
	Implicit Surfaces and Neural Radiance Fields
	Parametric Human Body Models

	IV Reinforcement Learning
	Reinforcement Learning
	Deep Reinforcement Learning

