
1

1 Computer Vision
1.1 The digital image
An image is a representation of a continuous function. A
pixel is a discrete sample of that function.
Digital images have many challenges: transmission interfe-
rence, compression artifacts, spilling, scratches, sensor noi-
se, bad contrast / resolution, motion blur.
Charge Coupled Device (CCD) An array of photosites
capture photons and hold a charge proportional to the light
intensity. We measure the charge with an analog-digital
converter (ADC) line by line.

1. Blooming: finite bucket capacity, oversaturation causes
bright vertical line

2. Bleeding/smearing: happens only with electronic shut-
ters, worse for shorter shutter times

3. Dark current: thermally generated charges yield noise
despite darkness, worsens with age

CMOS Same sensor elements as CCD. Each has its own
amplifier (more noise, reduce by substracting black image).
VS CCD: Less sensitive, per-pixel amplification, random
pixels access, no blooming, on chip integration.
Sampling Methods Cartesian (grid), hexagonal, non-
uniform. Undersampling: indistinguishable from lower fre-
quencies
Aliasing Signals ’traveling in disguiseäs other frequencies:
there are sine waves that go through the exact same points,
undersampling: difference sine wave
Quantization Lossy, sampled but not quantised can be
reconstructed. Can approximate. Simple quantization uses
k = 2b equally spaced intervals.
Image Noise Fluctuations on measurement, commonly
modeled by additive Gaussian noise with I(x, y) = f(x, y)+
c with c ∼ N (0, 1) p(c) = 1

σ
√

2π
exp(−(c−µ)2

2σ2) Poisson (shot
Noise) as p(k) = λke−λ

k! where λ is the expected number or
photons per time interval, proportional to incident scene
irredence
Signal to Noise Ration (SNR) index of image quality
s = F

σ where F = 1
XY

∑X
x=1

∑Y
y=1 f(x, y)

Resolution Geometric (# pixels / area), Radiometric (#
bits/pixel), Image (Cropping)
Colour Cameras

1. Prism: expensive, need 3 sensors, good alignment, high
frame rate, high separation, 3 bands, low artifacts

2. Filter Wheel: Medium price, multiple filters in front
sensor, good separation, low frame rate, 3+ bands.

3. Filter Mosaic: Single sensor, coat filter directly on sen-
sor, average separation, high frame rate, 3 bands.

4. CMOS layers that directly obsorb colours (better qua-
lity)

1.2 Image Segmentation
Complete Segmentation finite set of non-overlapping
regions: I =

⋃N
i=1 Ri and Ri ∩ Rj = ∅∀i ̸= j

Thresholding Compare greylevel with image to decide if
in or out bin image B(x,y)=1 if I(x, q) >= T else 0

Chromakeying When planning to segment, use special
background colour, plain distance measure Iα = |I − g| >
T . Problems: Variation due to lighting, noise, . . . , mixed
pixels
Mahalanobis distance more sophisticated segmentation
formula (accounts for variance):

√
(x − µ)⊤Σ−1(x − µ) >

T , T is threshold. Σ is the covariance matrix with Σij =
E [(Xi − µi)(Xj − µj)], estimate it from n data points (at
least 3 needed): 1

n−1
∑n

i=1(xi − µ)(xi − µ)⊤

ROC curve Describes performance of binary classifier. X-
axis is FPR = FP/FP + TN, the y-axis is TPR = TP/TP + FN.
We can choose a good operating point with gradient β =
N
P · VTN+CFP

VTP+CFN
with V being value and C being cost.

Connected Component Raster Scanning Scanning row
by row, if foreground label it to connected to other label
else give new label. 2nd pass to find equivalent labels.
Contour-Based Method When region found, follow bor-
der then carry on.
Region Growing Start from seed point or region, add
neighboring pixels that satisfy a criteria defining a region
until we include no more pixels.
Seed Region By hand or auto by conservative threshol-
ding.
Inclusion Criteria Grey level thresholding, grey level
distribution model. Include if (I(x, y) − µ)2 < (nσ)2, up-
date µ, σ after each iteration
Snakes (Active Contours) Initialize contour outside re-
gion of interested, image often blurred first, interatively
minimizes energy function E = Etension +Estiffness +Eimage

Background Subtraction Simple: Iα = |I − Ibg| > T,
or better Iα = |I − Ibg|⊤Σ−1|I − Ibg| > T
Morphological Operators Local pixel transformations
for processing region shapes, most often used on binary
images. args: binary image, structuring element

Structuring Elements Binary array, has an origin, small
set to probe image under study. Check Fit, Hit, Miss Con-
ditions.
Erosion ⊖ Set of all points in the image where SE fits
into. (Split apart joined objects, strip extrusions„ shrink
objects) 1 at origin if SE matches else 0

Dilation ⊕ Set of all points in image where SE hits FG
(repair breaks, repair intrusions, enlarges objects)

1.3 Image Filtering
Modification of pixels in an image based on same function
of a local neighborhood of pixels
Linear I ′(x, y) =

∑
(i, j) ∈ N(x, y)K(x, y; i, j)I(i, j), sub-

stitute I(i, j) = αI1(x, y) + βI2(x, y) to check if L[αI1 +
βI2] = αL[I1] + βL[I2]
Separable If a kernel can be written as a product of 2
simpler filters. sobel = [1 2 1].T @ [1 0 1]

Shift Invariant Doing the same for each pixel, K does
not depend on (x, y)

2

Filter at Edges clip to black, wrap around, copy edge,
reflect across edge, vary filter near edge
Correlation I ′ = K◦I (e.g. template matching: search for
best match by minimizing MSE) Taking the neighbours of
a pixel and and performing these operations. → Locating
a template in a larger image. Equivelent to Convolution if
K(i, j) = K(−i, −j) I ′(x, y) =

∑
(i,j)∈N(x,y) K(i, j)I(x +

i, y + j)
Convolution Same as correlation, except kernels rever-
sed. I ′ = K ∗ I and I ′(x, y) =

∑
(i,j)∈N(x,y) K(i, j)I(x −

i, y−j) Continuous: g(x) = f(x)∗k(x) =
∫
R f(a)k(x−a) da.

linear, associative, shift-invariant and commutative if the
dimensions are identical.

1.4 Kernels

Low-pass 1
9

[
1 1 1
1 1 1
1 1 1

]
High-pass

[−1 −1 −1
−1 8 −1
−1 −1 −1

]
Laplacian

[0 1 0
1 −4 1
0 1 0

]
Prewitt (∂I

∂y)
[−1 −1 −1

0 0 0
1 1 1

]
Sobel (∂I

∂y)
[−1 −2 −1

0 0 0
1 2 1

]
Band-pass high ∗ low

Diff. (x) [−1 1] Roberts (∂I
∂y)

[0 1
−1 0

]
Diff. (y)

[−1
1

]
Gaussian (Gσ) 1

2πσ2 e− x2+y2

2σ2

Smoothing Kernels (LPF) Allows frequencies lower than
certain frequencies to pass and attenuates frequencies abo-
ve the cutoff frequencies. Further = less effect.
Gaussian Kernel Rotational Symmetric, has a single lo-
be (neighbors influence decrease monotonically), still one
lobe in frequency domain (no corruption from high frequen-
cies), simple relationship to σ. Subtracting 1 from central
element of LPF gives LPF with inverted sign: (f − δ) ∗ a =
f ∗ a − δ ∗ a − a = −(a − (f ∗ a))
Scale Space Convolution of a Gaussian with σ with itself
is a Gaussian σ

√
2, repeated convolution by a Gaussian

filter produces scale space of an image.

Image Sharpening (Enhancement) Increases high fre-
quencies components to enhance edges I ′ = I + α|K ∗ I|
where K is a HPF, and α ∈ [0, 1]
Differentiation and Convolution K=[-1 1].T

∂f

∂x
= lim

ϵ→0
(f(x + y)

ϵ
− f(x, y)

ϵ
) ≈ f(xn+1, y) − f(xn, y)

∆x

1.5 Image Features

Edge Detection Magnitude: |∇f(x, y)| =
√

(∂f
∂x)2 + (∂f

∂y)2

Angle(Orientation) α(x, y) = tan−1(∂f
∂y / ∂f

∂x) For continuous
space.
Edge Detection Filters Large operators (Prewitt, So-
bel) - poor localization, + less noise sensitive + good de-
tection, usually convolved by a Gaussian. Small operators
(Roberts) + Good localization, sensitive to noise, poor de-
tection.
Edge Thresholding Thick Edges, sensitive to noise, scat-
tered thin noisy edges, clean background as discards low
gradients

1. Standard: ||∇I(x, y)|| < T Definitely not an edge, else
definitely an edge.

2. Double Thresholding T0 ≤ ||∇I(x, y)|| < T1 only edge
if neighbour is definitely an edge.

Edge Suddent change of brightness, can use local maxima
of first derivative or zero crossings of 2nd derivative.
Laplacian zero-crossings Find 0’s in I ′′ by applying La-
placian kernel to I. This yields very noisy but thin and un-
interrupted edges. Very sensitive, so blur first (Laplacian of
Gaussian) or suppress edges with low gradient magnitude,
Isotropic (Rotationally Invariant)

LoG(x, y) = 1
πσ4 [1 − x2 + y2

2σ2] exp(−x2 + y2

2σ2)

Canny edge detector Has thin interrupted edges that
are extended more than with simple thresholding

1. Smooth image with Gaussian
2. Compute grad. mag. and orientation (Sobel, Prewitt)

3. Non-maxima suppresion: quantize edge normal to one
of four dirs, if magnitude < either neighbour then sup-
press, else keep

4. Double thresholding: given Thigh, Tlow, strong pixel if
≥ Thigh and weak pixel if ≥ Tlow

5. Reject weak pixels not 8-connected through weak pixels
to a strong pixel

Hough transform Fits straight lines to edge pixels (y =
mx + c)

1. Subdivide (m, c)-space into discrete bins with value
2. Draw a line in (m, c)-space for each edge pixel and in-

crement bins by 1 along line
3. Detect peaks, e.g. by thresholding after non-maximum

suppresion

Infinite slopes are a problem, so reparametrize line with
(θ, p) : x cos(θ) + y · sin(θ) = ρ. For detecting circles with
known radius use (x − a)2 + (y − b)2 = r2 else with para-
meters (x0, y0, r)
Corner Detection Edges well localized only in one di-
rection. Desire properties of a corner detector: Accurate
localization, invariant against shift, rotation, scale, bright-
ness change. Robust against noise. High Repeatability.
Harris corner detection Scan picture with a given win-
dow size and compute the second moment matrix

M =
[∑

Ix(x,y)2
∑

Ix(x,y)·Iy(x,y)∑
Ix(x,y)·Iy(x,y)

∑
Iy(x,y)2

]
Then compute C(x, y) = det(M) − k · (trace(M))2 = λ1 ·
λ2 − k(λ1 + λ2)2 and mark as corner if C(x, y) > T . Do
non-maximum suppression to avoid duplicate detections
and for better localization, add gaussian weighting to all
terms in M : G(x−x0, y−y0, σ). Invariant to shift, rotation
and brightness offset but not scaling
Scale Invariant Feature Transform (SIFT) Find cor-
responding feature points in two images. Look for strong
responses of Difference of Gaussian (DoG) over scale space
and position, consider local maxima in both spaces to find
blobs. Compute histogram of gradient directions (ignoring
grad. mag. because of lighting etc.) at selected scale and

3

position and correct rotation by choosing principal direc-
tion. Now both pictures are at the same scale & orientati-
on, we can compare gradient histograms to find matching
points

DoG(x, y) = 1/k · e
x2+y2

(kσ)2 − e− x2+y2

σ2 , e.g. k =
√

2

1.6 Fourier Transform

The Fourier Transform (FT) represents a signal f
in terms of amplitudes and phases of its constituent
sinusoids.
1D:

F (u) =
∫
R

f(x) · e−i2πux dx

f(x) =
∫
R

F (u)ei2πux du (inverse)

2D:

F (u, v) =
∫∫

R2
f(x, y) · e−i2π(ux+vy) dx dy

F (u, v) = 1
N

N−1∑
x=0

N−1∑
y=0

f(x, y) · e−i2π(ux+vy
N) dx dy

f(x, y) =
∫∫

R2
F (u, v)ei2π(ux+vy) du dv (inverse)

e−i2π(ux+vy) = cos(2π(ux+vy))+i·sin(2π(ux+vy))

cos(x) = eix + e−ix

2 , sin(x) = eix − e−ix

2
Direc-Delta F (δ(x − x0))(u) = e−i2πux0

Phase ∅(F) = tan−1(Im(F)/Re(F)) All natural images
have about the same magnitude transform, so phase mat-
ters a lot
Magnitude |F | =

√
Re(F)2 + Im(F)2

Fact F (g(x
a))(u) = aF (g(x))(au)

Sampling A sampling function s(t) is an impulse train
with period T and its FT S(f): s(t) =

∑∞
n=−∞ δ(t − nT),

S(f) = 1
T

∑∞
n=−∞ δ(f − n

T).

Sampled Function X(t) after sampled: Xs(t) = X(t)s(t).
Nyquist Sampling Theorem The sampling frequency
must be at least twice the highest frequency ωs ≥ 2ω. If
not possible then bandlimit before with LPF.
Tolerance ϵ, solve for σ exp(−ω2σ2

2) < ϵ

Kernel Size If signal is discrete, you want your kernel
to be large enough to capture the significant part of the
Gaussian function’s curve. k = 2⌈3σ⌉ + 1
FT of sampled function let ω = n

T

F(Xs(t)) = F(Xs(t)) ∗ F(s(t))
= X(f)S(f)

= 1
N

∞∑
n=−∞

F (u − n

T
)

Nyquist Proof If we want to reconstruct the original si-
gnal f(t) from F(Xs(t)), then F̃(u) · F(w) cannot overlap
with its neighbors F(ω−ωs) and F(ω+ωs), thus ωs should
be larger than 2ω

Properties of the FT

Property f(x) F (u)

Linearity af1(x) + bf2(x) aF1(u) + bF2(u)
Duality F (x) f(−u)
Convolution (f ∗ g)(x) F (u) · G(u)
Product f(x) · g(x) (F ∗ G)(u)
Timeshift f(x − x0) e−2πiux0 · F (u)
Freq. shift e2πiu0xf(x) F (u − u0)
Differentiation dn/dxnf(x) (i2πu)nF (u)
Multiplication xf(x) i/2π(d/duF (u))

Fact A filter whose FT is a box is bad because filter is
infinite support, but a good LPF is a box filter because
it’s just the weighted average of neighbor pixels.
Restoration / Deconvolution Given image g = f ∗ h
where f is the original and h is a filter, it holds that
G = F · G and we can use the inverse of the filter H−1

to get F = G · H−1 and apply inverse FT to restore f . If
noise n is present (g = f ∗ h + n), we use a pseudoinverse
with limited maximal value H̃ = H

|H|2+ϵ , where ϵ is a small

number. Done because the noise might dominate in some
frequencies and the restoration would be incorrect
Fourier Transform of Important Functions

1.7 Unitary Transform
Vectorization Interpret image as vector row-by-row to a
column vector.
Linear Image Processing g = Hf
Image Collection F = [f1, f2, . . . fn]

Autocorrelation Matrix Rff = F ·F ⊤

N , its eigen vec-
tor with alrgest eigenvalue is direction of largest variance
among pictures.
PCA (KL Transform) Given data x ∈ A, e.g. an image,
we want to compress it to a lower-dimensional space B with
a compressor f : A → B s.t. size(f(x)) ≪ size(x). Mini-
mize reconstruction error E = ∥x − f−1(f(x))∥ and maxi-
mize the variance of our encoding. Given N data samples
xi ∈ Rd:

1. Normalize to remove brightness variations: x′
i = xi/∥xi∥

2. Center data by subtracting mean: x′′
i = x′

i − µ, µ =
1
N

∑N
i=1 x′

i

3. Compute covariance matrix: Σ = 1
N−1 ·

∑
(x′′

i) · (x′′
i)⊤

4. Compute eigendecomp. of Σ by solving Σe = λe with
e.g. SVG, i.e. Σ = UΛU⊤

5. Define Uk as the first k eigenvectors of Σ = [u1, . . . , uk],
dirs with largest variance (= eigenvalues)

4

6. PCA(xi) = U⊤
k (x′

i − µ) = U⊤
k · x′′

i

To decompress, use PCA−1(yi) = Uk · yi + µ.

• Face recognition, compare in projected space and find
nearest neighbour

• Face location, compute reconstruction error for every
small patch, pick min

• Data compression and visualization

Eigenfaces struggle with different lighting conditions. Fis-
herfaces perform better by trying to maximize between-
class scatter and minimizing within-class scatter.
Storage Let image size be L × W , dimension K, number
of pictures N . Then µ : L×W , Uk : L×W ×K, compressed
image size N ×K. Find K s.t. NLW > LW +KLW +NK

JPEG Compression

1. Conversion RGB → YUV; only Y carries brightness info
(luminance), UV contain color (chrominance)

2. Humans are more sensitive to brightness than color,
so compress colors with chroma subsampling (e.g. only
color of upper left pixel for 4 × 4 grid).

3. Go over image with 8×8 block for each YUV component
and apply 2D DCT to it → 64 vals, top left low.freq,
bottom right high-freq.

4. Compress by integer division with weighting matrix →
compress low-right

5. Zig-zag run length encoding followed by Huffman

High compression (10-100x) and 24 bit color depth is possi-
ble, but at the same time artifacts / wrong colors / Moiré.

Also edges are softened because sharp edges require ∞ freq.
JPEG2000 achieves better results by using the Haar trans-
form globally, not just 8×8, on a successively downsampled
image.

1.8 Pyramids and Wavelets
Scale Space Representations From an original signal
f(x), generate a parametric family of signals f t(x), where
fine-scale information is successively suppressed.
Scaled Representation Applications Search for cor-
respondence (look at coarse scales, then refine with finer
scales), edge tracking (a good edge at fine scale has parents
at a coarser scale).
Gaussian Pyramid Smooth with Gaussians G × G = G.
Synthesis: Smooth & Sample. Analysis: take top image.
Laplacian Pyramid Synthesis: Preserve different between
unsampled Gaussian Pyramid level. Band pass filter - each
level represents spatial frequencies. (largely) unrepresen-
ted at other levels. - Compression. Analysis: Reconstruct
Gaussian Pyramid, take top layer.

1.9 Optical Flow
Apparent motion of brightness patterns, use extracted fea-
ture points and compute their velocities at time t. Assum-
tions: Brightness Constancy, Small Motion, Spatial Cohe-
rence.
Brightness Constancy

I(x, y, t) = I(x + δx, y + δy, t + δt)
≈ I(x, y, t) + Ixδx + Iyδy + Itδt

(Taylor approx., good if small motion)
=⇒ Ixδx + Iyδy + Itδt ≈ 0

=⇒ Ix
δx

δt︸︷︷︸
u

+Iy
δy

δt︸︷︷︸
v

+It ≈ 0

Horn & Schunck Assumption: values u(x, y), v(x, y) are
smooth and change slowly (x, y) Minimize es + λec

ec =
∫∫

(Ixu + Iyv + It)2 dx dy (brightness const.)

es =
∫∫

(u2
x + u2

y) + (v2
x + v2

y) dx dy (smoothness)

Has errors at boundaries, information spreads from corner-
type patterns
Lucas-Kanade Assume all neighbouring pixels in a patch
W observer the same motion [u, v]⊤ (+ small movement,
brightness constancy). Compute Ix, Iy, It and minimize

E =
∑

(x,y)∈W

(Ix(x, y)u + Iy(x, y)v + It(x, y))2

Solve least squares (sums are over patch W):[∑
I2

x

∑
IxIy∑

IxIy

∑
I2

y

]
(u

v) = −
(∑

IxIt∑
IyIt

)
(
∑

∇I∇I⊤)u = −
∑

∇IItFails if all gradients are in the
same direction, e.g. for edges or smooth regions. However,
it works well for corners and textured areas.
Iterative refinement Obtain more exact estimate of op-
tical flow:
1. Estimate OF with Lucas-Kanade
2. Use estimated flow to warp image
3. Estimate OF using warped image
4. Repeat
5. Add up all estimates
Fails if intensity structure poor or large displacement.
Coarse-to-fine pyramids Create multiple levels by gra-
dual subsampling of the image. Start with coarsest level,
estimate OF. Gradually use aggregated OF estimate as
initial estimate of the OF in the next finer level and esti-
mate again with Lucas-Kanade. Iterate until finest level.
This still fails if large lighting change happens.
Application of O.F. Video compression - make use of
temporal redundancy and predict frames based on pre-
viously encoded frames, Video stabilization - estimate flow
between frames and warp image using same flow over all
pixels so that flow is close to 0.

5

1.10 Video Compression
Bloch’s Law If stimulus duration ≤ 100 ms, we can ex-
change duration for brightness and vice-versa, e.g. if bright-
ness of stimulus is halved, double the duration → can still
be detected. This enforces > 10 Hz for videos
Interlaced Video Format 2 temporally shifted half images.
Increase frequency → decrease spatial resoltuion.
Temporal Processing Takes advantage of similarity bet-
ween successive frames. Temporal Redundancy: Spatial
correlation betweeen neighboring pixels. Ineffective when
many scene changes or high motion.
I-frame Intra coded, coded independently of all others.
P-frame Predictively coded, coded based on previous co-
ded frames (based on previous I, P frames, can send motion
vector + changes)
B-frame Bi-directionally predicted frame, coded based on
both previous and future coded frames. (based on previous
and following I, P frames, in case something is uncovered).
Motion Estimation Algo (ME)

1. Divide current frame into non-overlapping N1×N2 blocks
2. For each block, find the best matching block in reference

frame (usually previous frame)

Best ”match”: MSE, MAE, Candidate Blocks: All blocks
in e.g. (32x32) pixel area, Search Strategy: Full Search: Ex-
amine all candidate blocks Partial (fast) search: Examine
a carefully selected subset
Motion Compensation Algo (MC) Use the best mat-
ching of reference frame as prediction of blocks in current
frame (gives motion vectors from ME to predict content of
current from reference frame). Motion Vector Expresses
relative horizontal and vertical offsets (mv1, mv2), or mo-
tion given a block from one frame to another (each block
has its own MV).
Half-pixel ME : Coarse Step: Perform Integer ME on
blocks, find best Int-pixel MV. Fine-step: Refine to find
best half-pixel ME (by spatial interpolation and best-matching).

1.11 Convolutional Neural Networks
Given a kernel with size F , an image with size N , padding
P and a stride S, the output dimensions of applying the

filter to the image is N+2P −F
S +1. For stride 1 and padding

P = F −1
2 , the input dimension is thus preserved.

1.12 Radon Transform
Given an object with unknown density f(x, y), find f by
sending rays from all directions through the object and
measure absorption on the other side. We assume parallel
beams for a given angle and no spreading of a beam.
Continuous case: The radon transform of a line is

R(ρ, θ) =
∫

u(ρ cos(θ) − s sin(θ), ρ sin(θ) + s cos(θ)) ds

=
∫∫

R2
u(x, y)δ(p − x cos(θ) − y sin(θ)) dx dy

We want to find the optical density u(x, y) given R(ρ, θ).

2 Computer Graphics
2.1 Graphics Pipeline

2.2 Lights and Colours
Luminous Flux [Lumen] Perceived power of light F =
c

∫ 780nm

380nm
P (λ)V (λ)dλ where P (λ) is the relative spectral

lambda density and V (λ) is the relative spectral sensitivity:
c = 683 lm

W

Luminous Intensity [candela] I = dF
dw so F =

∫
Idw

Luminous Y [candela−2] Y = d2F
dA cos ϵdw and I =

∫
Y dA

so F =
∫∫

Y dAdw

Illumination [lux] B = dF
dA

3 Cone Cell Types Short S, Medium M, Long L, S: Blue,
M: Green, L: Red
Metamers Light with different spectrum can map to sa-
me colour → CIE observer mixes λ1, λ2, λ3

Negative Matching Values Some colours cannot be com-
bination of RGB, add red light to reference if impossible
to match, leads to negative red values.
Colour Spaces

Chromaticity Colour, colourness
Luminance Brightness, Intensity
RGB Useful for monitors and displays
HSV Hue, Saturation, Value. Dimensions correspond to
natural notions of “characteristics” of color. Useful for color
picking
RGB to HSV min=min(R,G,B);max=max(R,G,B)
V=max;s=(max-min)/max if max != 0 else 0;
H=Hue(V,S,R,G,B)

YIQ Y - luminance, I - in-phase (orange-blue), Q - quadra-
ture (purple-green), based on psycho-physical properties of
eye, good for skin colors, used for television[

Y
I
Q

]
=

[0.229 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.528 0.311

] [
R
G
B

]

6

CMY(K) Subtractive color space, used for printing. To
convert: [CMY] = [111] − [RGB]
LAB / LUV Perceptually correct distances, nonlinear
warps of CIE chart such that MacAdams ellipses become
approx. circular.
White point calibration(

x
y
z

)
=

[
xRCR xGCG xBCB

yRCR yGCG yBCB

(1−xR−yR)CR (1−xG−yG)CG (1−xB−yB)CB

] [
R
G
B

]
Set (R, G, B) to (1, 1, 1). Map it to the given white point,
e.g. (0.9505, 1, 1.0890), then find CR, CG, CB

2.3 Transformations
Homogeneous coordinates Allow representing transla-
tion by matrix multiplication, done by projection onto hy-
perplane: p = [x y z w]⊤ → [x

w
y
w

z
w 1]

3D Transformations Examples:

Trans.
[1 0 0 tx

0 1 0 ty

0 0 1 tz
0 0 0 1

]
Scaling

[sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

]
Rot. (x)

[1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

]
Rot. (y)

[cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

]
Rot. (z)

[cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

]
Shear (2D)

[
1 a 0
0 1 0
0 0 1

]
Shear (x)

[1 0 shx 0
0 1 shy 0
0 0 1 0
0 0 0 1

]
If we have e.g.

[−1 0 2
0 −1 2
0 0 1

]
, we first scale/rotate, then trans-

late (follows from matrix multiplication. laws). Rotation
that does not leave XY is around Z axis. Rot 2D coun-
terclockwise similar to Z in 3D. If clockwise take -1 * si-
ne values. APPLY MATMUL FROM RIGHT TO
LEFT!!!!

Change of coord. system : p′ =
[

| | | |
r1 r2 r2 t
| | | |
0 0 0 1

]
=⇒ p′ =

TRp Transforming a normal n: n′ = (M−1)⊤n

Quaternions Alternative approach for rotation.
Properties:

i2 = j2 = k2 = −1, ijk = −1, ij = k, ji = −k

jk = i, kj = −i, ki = j, ik = −j

∥q∥ =
√

a2 + b2 + c2 + d2,

where q = a + [b c d]
[

i
j
k

]
= a + v ,v not vector!

z = a − bi − cj − dk, z−1 = z

∥z∥

Rotation with quaternions Rotate p = [x y z] around
axis u = [u1 u2 u3] by angle θ.
1. Convert p to quaternion pQ = xi + yj + zk

2. Convert u to quaternion q′′ = u1i + u2j + u3k and
normalize q′′ to q′ = q′′/∥q′′∥

3. Rotation quaternion q = cos(θ/2) + sin(θ/2)q′

and q−1 = cos(θ/2) − sin(θ/2)q′

4. Rotated point p′ = qpq−1

5. Convert p′ back to cartesian
Orientation of coord. system Thumb: x-axis, index fin-
ger: y-axis, middle finger: z-axis. To get direction of cross
product, use thumb & index finger as multiplicands and
middle finger is direction. Why? Efficient implementation,
easy interpolation, no gimble lock.

2.4 Lighting
Luminous Flux Φ(A) =

∫
P (λ)V (λ) dλ

Perceived power of light, weighted with human sensitivity
[lumen]
Irradiance / Illumination E(x) = dΦ(A)/dA(x)
Flux per unit area arriving at surface [W/m2]
Radiosity B(x) = dΦ(A)/dA(x)
Flux per unit area leaving a surface [W/m2]
Radient/Luminous Intensity I(w⃗) = dΦ/dw⃗

Outgoing flux per solid angle [W/sr]
Radiance/Luminance L(x, w⃗) = d2Φ(A)/cos θdA(x)dw⃗

Flux per solid angle per perpendicular area = effective in-
tensity per unit area
Lambert’s Cosine Law Irradiance at surface is propor-
tional to cosine of angle between light direction and surface
normal: E = Φ

A cos θ

BRDF Bidirectional Reflectance Distribution Function en-
codes behavior of light that bounces off surface, given in-
coming direction wi, hos much gets scattered in outgoing
direction. sr−1

fr(x, wi, wr) = dLr(x, wr)
dEi(x, wi)

= dLr(x, wr)
Li(x, wi) cos θidwi

Reflection Equation Can be derived from BRDF equa-
tion. Describes *local* illumination model. Reflected ra-
diance due to incident illumination from all directions.

Lr(x, wr) =
∫

H2
fr(x, wi, wr)Li(x, wi) cos θidwi

Ambient Light Scattered by enviroment coming from all
directions, reflection independent of camera, light position,
surface orientation.

Phong Reflection / Illumination Model

I = Iaka︸︷︷︸
ambient

+fattIp[kd(N · L)︸ ︷︷ ︸
diffuse

+ ks(R · V)n︸ ︷︷ ︸
specular

]

R = N · cos(θ) + S = 2N(N · L) − L. Material parameters:
ka, kd, ks, n; light parameters: Ia, Ip; geometry parameters:
N, L, V, R; attenuation due to spatial radiation: fatt. Big
n leads to small highlights in terms of surface area
Flat shading One color per primitive, in screen space

Problems with scan line interpolations are perspective dis-
tortion, orientation dependence and shared vertices. Qua-
lity depends on primitive size

7

Phong shading Barycentric interpolation of vertex nor-
mals, in object space. Properties: x = a =⇒ nx =
na, λa + λb + λc = 1,
λaa + λbb + λcc = x Problem: The normal may not be
defined or not representative.
Transparency, alpha blending Linearizes exponential
attenuation of intensity Iλ = Iλ1α1∆t + Iλ2e−α1∆t =⇒
linearization =⇒ Iλ = Iλ1α1∆t + Iλ2(1 − α1∆t). If it’s
the last object, set ∆t = 1.
Problem: Rendering order, we need sorted traversal of po-
lygons → back-to-front rendering, Issue: When objects over-
lap, overlapping front not considered. Solution: Depth pee-
ling, multiple passes, each pass renders the next closest
fragment.
Differences Ambient light provides general, non-directional
illumination. Diffuse light scatters in many directions, soft-
ly illuminating objects, emphasizing color and texture wi-
thout harsh shadows. Specular light creates focused, shiny
reflections, highlighting an object’s glossy qualities.

2.5 Geometry & Textures
Explicit representations Point cloud, subdivision sur-
face (define surface with primitives, use recursive algorithm
for refining), polygon mesh. Can easily model complex sha-
pes and sample points from it, but it can take lots of sto-
rage
Implicit representations Signed distance function, al-
gebraic surface (x(u, v), y(u, v), z(u, v)), level set. Can ea-
sily test inside/outside, compact storage but sampling all
points is expensive, complex shapes hard to model
Texture Mappings Goal: Map Texture (u, v)-coords. to
geometry (x, y, z)-coords. Example of sphere mapping:
(u, v) → (sin(u) sin(v), cos(v), cos(u) sin(v)). We want low
distortion, a bijective mapping that is efficiently computa-
ble.
Light Maps Save computation power by precomputing
static lighting and applying it to texture (can be dynami-
cally adapted)
Environment Maps Mirror environment with imaginary
sphere / cube for easier computation of reflective objects
Bump Maps Perturb normals to fake fine detail, store
normal displacement in grayscale value. A Normal map

directly stores perturbed normals as (r, g, b) color where
n′ = (2r−1, 2g−1, 2b−1)⊤. Limitations: No bumps on sil-
houette, no self-occlusions, no self-shadowing. In contrast,
displacement mapping actually modifies geometry, but
more complex & expensive
Procedural Textures Generate textures from noise, e.g.
Perlin or Gabor noise by creating a gaussian pyramid of
noise and summing all layers in a weighted way
Mip-Mapping Store down-sampled (blurred to avoid ali-
asing) versions of texture, use low-res versions for far away
objects and interpolate inbetween. This avoids asliasing
and improves compute efficiency but incurs a storage over-
head (1

3 of the original texture storage)
Perspective Projection Linear variations in world coor-
dinates can yield non-linear variation in screen coords →
optimal resampling filter is spatially variant
Geometry aliasing Happens at polygon edges. Soluti-
on: Introduce multiple samples per pixel (supersampling).
Different patterns possible: Uniform, jittering, stochastic,
Poisson, ...

2.6 Scan Conversion

Scan Conversion of Polygons

1. Calculate all intersections on scan lines
2. Sort intersection points by ascending x-coordinates
3. Fill all spans between consecutive intersections if parity

is odd

2.7 Curves & Splines
Bézier curves x(t) = b0Bn

0 (t) + . . . + bnBn
n(t)

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i, if i < 0 ∨ i > 0 : Bn

i (t) = 0

(reminder:
(

n
i

)
= n!/i!(n − i)!) The Bn

i ’s are the Bernstein
polynomials. Coefficients bi are control points. It can be
constructed visually with the deCasteljau algorithm.

Properties of Bernstein Partition of Unity, positively,
recursion, symmetry.
Properties of Bézier Curves Affine Invariance affi-
ne transform of all points on the curve is accomplished by
affine transform of control points. Convex Hull curve lies
within convex hull of its control polygon. Design Proper-
ty Control Polygon gives a rough sketch of the curve. End
Point Interpolation Bn

0 = Bn
n = 1. Variation diminis-

hing property The maximum number of intersections of
a line with the curve is ≤ to the number of intersections
with its control polygon. Limitations Global support of
basis function, insertion of new control points come along
degree evaluation. Cr-continuity between individual seg-
ments of Bézier curves.
Cubic Bézier x(t) = b0(1 − t)3 + 3b1t(1 − t)2 + 3b2t2(1 −
t) + b3t3

B-splines x(t) =
∑k

i=0 diN
n
i (t), basis function is recursi-

vely defined by convolution of box func.: B0(t) = 1 if t ∈
[−1, 0] =⇒ B1(t) =

∫
R B0(s)B0(t − s) ds und Bn(t) =

Bn−1(t) ∗ B0(t).
deBoor Points s(u) =

∑N
i=1 dN

i (u). Coefficients di of b-
spline. Basis are piece-wise, recursively defined polynomial
over sequence of knots u0 < u1 < u2 < . . . defined by knot
vector T = U = [U0, . . . , Uk+n+1]
B-Spline Properties Partition of unity

∑N
i=1 Nn

i (u) =
1, positivity, compact support, continuity CN−1, N basis
functions = N control points, bézier curves are special cases
of b-splines.
Linear B-Spline Given two points p0, p1 as well as two
knots t0, t1, then the convex combination of these two lines
give

d1
0(t|p0, p1; t0, t1) = t1 − t

t1 − t0
p0 + t − t0

t1 − t0
p1

8

Recurrence Relation

Nn
i = (u − ui)

Nn−1
i (u)

ui+n − ui
+ (ui+n+1 − u)

Nn−1
i+1 (u)

ui+n+1 − ui+1

where N0
i = (u) = 1 if u ∈ [ui, ui+1] else 0

De Boor Algorithm Control point on kth step dk
i =

(1−ak
i)dk−1

i−1 +ak
i dk−1

i and ak
i = t−ui

ui+n+1−k−ui
where d0

i = di

and dn
n = s(t)

Tensor Product Surface
Subdivision Surfaces Generalization of spline curves/
surfaces, converge to smooth limit surface, successive refi-
nement. Primal: Faces are split into sub-faces, Dual: Verti-
ces are split into multiple vertices Approx.: Control points
are not interpolated Interpol.: Control points are interpo-
lated

2.8 More Signal Processing

2.9 Visibility and Shadows
Visibility Problem Some parts of some surfaces are oc-
cluded
Solution 1: Painters Algorithm Render objects/polygons
from furthest to nearest. Problems: Cyclic Overlaps, Inter-
sections

Z(Depth)-buffering : Store depth to nearest object for
each pixel. Algo: 1. Initialize all z values to infinity 2. For
each polygon, if z value of a pixel for this polygon smaller
than the stored z value. If larger, then its behind, other-
wise replace the stored z value. Problem: Limited Reso-
lution (from the camera, near: higher res, far: lower res),
Z-fighting: when two or more objects are exactly or very
closely positioned along the Z-axis (depth in 3D space)
Why Shadows? Depth cue, scene lighting, realism
Basic Shadows :

1. Planar: Draw project of the object on the ground, Limi-
tations: Self shadows, shadows on other objects, curved
surfaces.

2. Projective Texture Shadows: Separate obstacle and re-
ceiver. Compute b/w image of the obstacle from light.
Use image as projective texture. Limitations: Need to
specify obstacle and receiver, No self-shadows.

Shadow Maps Compute the depths from light, camera.
Algo: For each pixel on the camera place

• Compute the point in world coordinates
• Project point onto the light plane
• Compare d(xL) (shadow map) and zL

• If d(xL) < zL, x is in shadow

Limitations:

• Bias: For a visible point d(xL) < zL, might get z-
fighting again. Solution: d(xL) + bias < zL (tricky)

• Field of view: A point to shadow can be outside the
field of view of shadow map. Use cubical shadow map
or spot lights.

• Aliasing: Undersampling of shadow map.

Shadow Volumes Explicitly represent the volume of space
in shadow, if the polygon is inside the volume, it is in
the shadow (similar to clipping). Naive implementation
O(#polygons × #lights) Algo:

• Shoot a ray from the eye
• Incre-/decrement a counter each time boundary of sha-

dow volume is intersected.

• If counter > 0, primitive is in shadow, elif = 0: primitive
not in shadow

Optimization: Use silhouette edges only (where a back-
facing & front-facing polygon meet)

2.10 Ray Tracing
For each pixel, send a ray into the scene. On object hit,
send multiple rays (diff., reflected, refracted) further until
we hit a light source or reach some # of bounces. Figure
out whether point in shadow by shooting rays to all light
sources. For anti-aliasing, use multiple rays per pixel.
Ray-Surface Intersections Ray equation: r(t) = o + td
Sphere intersection: Solve for t : ∥o + td − c∥2 − r2 = 0
Triangle: first intersect with triangles plane: t = − (o+p1)n

d·n ,
where n = (p2 −p1)× (p3 −p1). Then compute barycentric
coeff. of intersection point and check whether s1 +s2 +s3 =
1 ∧ 0 ≤ si ≤ 1 =⇒ if yes, inside triangle
Ray Tracing Extensions

• Add refraction
• Add area lights by having multiple shadow rays
• Motion blur: render objects at diff. times per frame
• Depth of field

Acceleration Data Structures
Brute force Intersect every ray with every primitive
Uniform grids Determine sensible grid resolution, com-
pute AABB’s, incrementally rasterize ray, compute inter-
section with objects in each cell, stop when intersection
found, if multiple take closest. (Easy to code, building da-
ta structure is fast, BUT does not adapt to non-uniform
scenes (→ hierarchical grids.
Space partitioning trees Octree, kd-tree, bsp-tree
OpenGL projectionMatrix transforms points from ca-
mera to screen space. modelviewMatrix transforms points
from object to camera space. If modelviewMatrix is not
a uniform transformation, then the original normals aren’t
perpendicular anymore. That’s why we use a normalMatrix
to transform the normals s.t. they remain perpendicular in
the new space. gl Position contains the coordinates of a
vertex in 3D space in homogeneous form.

	Computer Vision
	The digital image
	Charge Coupled Device (CCD)
	CMOS
	Sampling Methods
	Aliasing
	Quantization
	Image Noise
	Signal to Noise Ration (SNR)
	Resolution
	Colour Cameras

	Image Segmentation
	Complete Segmentation
	Thresholding
	Chromakeying
	Mahalanobis distance
	ROC curve
	Connected Component Raster Scanning
	Contour-Based Method
	Region Growing
	Seed Region
	Inclusion Criteria
	Snakes (Active Contours)
	Background Subtraction
	Morphological Operators
	Structuring Elements
	Erosion
	Dilation

	Image Filtering
	Linear
	Separable
	Shift Invariant
	Filter at Edges
	Correlation
	Convolution

	Kernels
	Smoothing Kernels (LPF)
	Gaussian Kernel
	Scale Space
	Image Sharpening (Enhancement)
	Differentiation and Convolution

	Image Features
	Edge Detection
	Edge Detection Filters
	Edge Thresholding
	Edge
	Laplacian zero-crossings
	Canny edge detector
	Hough transform
	Corner Detection
	Harris corner detection
	Scale Invariant Feature Transform (SIFT)

	Fourier Transform
	Direc-Delta
	Phase
	Magnitude
	Fact
	Sampling
	Sampled Function
	Nyquist Sampling Theorem
	Tolerance
	Kernel Size
	FT of sampled function
	Nyquist Proof
	Properties of the FT
	Fact
	Restoration / Deconvolution
	Fourier Transform of Important Functions

	Unitary Transform
	Vectorization
	Linear Image Processing
	Image Collection
	Autocorrelation Matrix
	PCA (KL Transform)
	Storage
	JPEG Compression

	Pyramids and Wavelets
	Scale Space Representations
	Scaled Representation Applications
	Gaussian Pyramid
	Laplacian Pyramid

	Optical Flow
	Brightness Constancy
	Horn & Schunck
	Lucas-Kanade
	Iterative refinement
	Coarse-to-fine pyramids
	Application of O.F.

	Video Compression
	Bloch's Law
	Interlaced Video Format
	Temporal Processing
	I-frame
	P-frame
	B-frame
	Motion Estimation Algo (ME)
	Motion Compensation Algo (MC)
	Half-pixel ME

	Convolutional Neural Networks
	Radon Transform

	Computer Graphics
	Graphics Pipeline
	Lights and Colours
	Luminous Flux
	Luminous Intensity
	Luminous Y
	Illumination
	3 Cone Cell Types
	Metamers
	Negative Matching Values
	Colour Spaces
	Chromaticity
	Luminance
	RGB
	HSV
	RGB to HSV
	YIQ
	CMY(K)
	LAB / LUV
	White point calibration

	Transformations
	Homogeneous coordinates
	3D Transformations
	Change of coord. system
	Quaternions
	Rotation with quaternions
	Orientation of coord. system

	Lighting
	Luminous Flux
	Irradiance / Illumination
	Radiosity
	Radient/Luminous Intensity
	Radiance/Luminance
	Lambert's Cosine Law
	BRDF
	Reflection Equation
	Ambient Light
	Phong Reflection / Illumination Model
	Flat shading
	Phong shading
	Transparency, alpha blending
	Differences

	Geometry & Textures
	Explicit representations
	Implicit representations
	Texture Mappings
	Light Maps
	Environment Maps
	Bump Maps
	Procedural Textures
	Mip-Mapping
	Perspective Projection
	Geometry aliasing

	Scan Conversion
	Scan Conversion of Polygons

	Curves & Splines
	Bézier curves
	Properties of Bernstein
	Properties of Bézier Curves
	Cubic Bézier
	B-splines
	deBoor Points
	B-Spline Properties
	Linear B-Spline
	Recurrence Relation
	De Boor Algorithm
	Tensor Product Surface
	Subdivision Surfaces

	More Signal Processing
	Visibility and Shadows
	Visibility Problem
	Solution 1: Painters Algorithm
	Z(Depth)-buffering
	Why Shadows?
	Basic Shadows
	Shadow Maps
	Shadow Volumes

	Ray Tracing
	Ray-Surface Intersections
	Ray Tracing Extensions
	Acceleration Data Structures
	Brute force
	Uniform grids
	Space partitioning trees
	OpenGL

