
1 Math and Probability
σ -algebra
F ⊆ P (Ω) is a σ -algebra over Ω iff
1. Ω ∈ F 2. if ε ∈ F , then εC ∈ F
3. if ε1, ε2 . . . is a finite or infinite
sequence in F , then

⋃
n εn ∈ F

Measurable Space (Ω,F )
Probability Measure
P : F → [0,1] where 1. P(Ω) = 1 2.
If ε1, ε2 is a countable sequence of
disjoint sets in F , then P(

⋃
n εn) =∑

nP(εn)
Probability Space (Ω,F ,P)
Algebra
A ⊆ P (Ω) over Ω if 1. Ω ∈ A 2.
ε ∈ A =⇒ εC ∈ A 3. ε1, ε2 ∈ A =⇒
ε1 ∪ ε2 ∈ A
Probability Pre-Measure
P0 : A → [0,1] s.t. 1. P0(Ω) = 1
2. If ε1, ε2, . . . is a countable se-
quence of disjoint sets in A whose
countable union is also in A, then
P0(

⋃∞
n=1 εn) =

∑∞
n=1P0(εn)

Geometric Series
S =

∑∞
n=0 ar

n = a
1−r , for |r | < 1

Cylin C(H) = {yω|y ∈ H,ω ∈ Σ∞}
Binomial
µ = E[x] = np, σ2 = np(1− p)
Gaussian 68, 95, 99.7
p(x) = 1√

2σ2
exp{−1

2 (x−µσ )2}

Triangle Inequality
∥u+ v∥ ≤ ∥u∥+ ∥v∥
Matrix Multiplication
A ∈ Rm×n,B ∈ Rn×p AB ∈ Rm×p ti-
me O(m×n× p)

Cosine similarity u⊤v
∥u∥∥v∥

softmax(x)d = exp{xd }∑D
j=1 exp {xj }

2 Foundations
Sequence Model
A probability space over the set
Σ∗ ∪Σ∞
Language Model
A discrete distribution pLM over
Σ∗ or P ∗ (Σ∞) = 0

GNM pLM(y) = exp{−p̂GN(y)}∑
y′∈Σ∗ exp{−p̂GN(y′)}

LNM
pLN(y) = pSM(eos|y)

∏T
t=1pSM(yt |y<t)

Prefix Prob π(y) =
∑

y′∈Σ∗ pLM(yy′)

Probability Measure of LNM
1. Define C ⊆ P (Ω) as an algebra
over Ω = Σ

∞
where C =

⋃∞
k=1Ck

2. P0(C(H))=
∑

y∈HpLN (y)

3. Extend P0 to (Σ
∞
,σ (C),P)

4. Construct SM: C(H)={yω|y ∈
H,ω ∈ Σ∗ ∪ Σ∞} then, x(ω) ={
ω<k if k is the first eos in ω
ω otherwise

Tightness
An LNM is tight IFF p̃EOS(t) = 1
for some t or

∑∞
t=1 p̃EOS(t) =∞

3 Classical LMs
FSAA = (Q,Σ,δ, I ,F)
WFSAA = (Q,Σ,δ,λ,ρ)
Deterministic FSA
1. No ε-transitions 2. ∀(q,a) ∈Q ×
Σ, at most one q′ ∈Q s.t. q

a→ q′ ∈
δ 3. |I | = 1.
w(π) = λ(q1)

∏N
i=1wiρ(qN ).

A(y) =
∑

π∈Π(A,y)w(π)

Z(A) =
∑

y∈Σ∗A(y)

Probabilistic FSA
λ,ρ and the weights are non-
negative,

∑
q∈Qλ(q) = 1, ∀q ∈ Q

we have ρ(q) +
∑

q
a/w−→q′

w = 1

Tightness of PFSA
A PWFSA is tight if and only if all
accessible states are co-accessible.
Finite State LM
∃A = (Σ,Q,δ,λ,ρ), L(A) = L(pLM)
n-gram assumption
pSM(yt |y<t)=pSM(yt |yt−1 . . . yt−n+1)
PAD with BOS n − 1 − t times.
O(|Σ|n−1)
Repre. based n-gram
θ = {θy|y=pSM(y|y) | y ∈ Σ,y ∈
Σ
n−1

,θy|y ≥ 0,
∑

y′∈Σθy′ |y = 1}

MLE pSM(yn|y<n) = C(y1,...,yn)
C(y1,...,yn−1)

Bengio’s Model pSM(yt |y<t) =
softmax(enc(yt−1:t−n+1)⊤E+b)yt
CFG G = (Σ,N ,S,P )
WCFGW : P →R

PCFG
W is non-negative, ∀X ∈ N we
have

∑
X→α∈PW (X→ α) = 1.

WCFG Allsum
Z(G) =

∑
d∈DG w(d)

=
∑

d∈DG
∏

(X→α)∈dW (X→ α)
Tightness of PCFG
For a PCFG G with |N | = N we de-
fine for each Xn ∈ N its produc-
tion generating fct.gn

(
(si)

N
i=1

)
=∑

Xn→αW(Xn → α)sr1(α)
1 · · ·srN (α)

N
where ri(α) is the number of ti-
mes Xi appears in α. Then we set
E ∈ R

N×N to have entries Enm =
∂

∂sm
gn(s1, ..., sN )

∣∣∣
s1,...,sN=1

. Then G is
tight if λ < 1 and non-tight if λ >

1, where λ = max
{
|λ′ | | λ′ ∈ σ (E)

}
.

Pushdown Automaton
A language is context-free IFF it
is recognized by some PDA.
Multi-Stack PDA
Any (probabilistic) 2-stack PDA is
Turing complete. Hence, the tight-
ness of a probabilistic 2-stack
PDA is undecidable.
4 RNNs
RNN
A RNN is given by an initial state
h0 ∈ R

d and a dynamics map
ht = f (ht−1, yt). An RNN-LM uses
enc(y<t+1) = ht, E ∈R|Σ|×d
Recurrent Neural Sequence Model
pSM(yt |y<t) = f

∆|Σ|−1(EencR(y<t))yt
Elman RNN
An Elman RNN is an RNN with
f (ht−1, yt) = σ (Uht−1 +V e′(yt)+b),
where U ∈ R

d×d , V ∈ R
d×R and

b ∈Rd and e′ : Σ→R
R is an input

embedding function.
Jordan RNN f (ht−1, yt) =
σ (Uσ ′(Eht−1) +V e′(yt−1) + b)

Tightness of RNN-LMs
If the LM uses the softmax and
s∥ht∥ ≤ log t (in particular if f is
bounded, e.g. if f uses a bounded
activation function), then the in-
duced LM is tight.

Expressiveness of RNNs

HRRNs (over R) ≡ dPFSA for
any activation function with fi-
nite image. Minsky’s construc-
tion encodes any dPFSA using
U ∈ R

|Σ||Q|×|Σ||Q|, Un(q′ ,y′),n(q,y) =

I{qt
y′/◦
−→ q′ ∈ δ} to encode which

states are reachable from ht−1 V ∈

R
|Σ||Q|×|Σ|, Vn(q′ ,y′),m(y′) = I{◦

y′/◦
−→

q′ ∈ δ} to encode which states can
be transitioned to using yt.

Em(y′)n(q,y) =

logω(q
y′/w
−→ ◦) if y′ ∈ Σ

logρ(q) otherwise

Can reduce the hidden state di-
mensionality to Ω(|Σ|

√
|Q|).

Saturated Sigmoid Elmann RNNs
are Turing complete (because they
can encode two-stack PDAs). It
is thus undecidable whether an
RNN-LM is tight.
5 Transformers
Attention
f : RD × RD → R, q ∈ R

D , Kt ∈
R
t×D , Vt ∈ R

t×D . Att(qt ,Kt ,Vt) :
R
D ×Rt×D ×Rt×D →R

D

st = f∆D−1(f (q,k1), . . . , f (q,kt))
at = Att(qt ,Kt ,Vt)=s1v1 + · · ·+stvt
Transformer Layer

T : R
T×D → R

T×D ,X,Z ∈ R
T×D

at = Att(Q(xt),K(Xt),V (Xt)) + xt
zt = O(at) + at
T(X)=Z = (z⊤1 ,z

⊤
2 , . . . ,z

⊤
T ) ∈RT×D

Transformer
X1 = (e′(y0),e′(y1), . . . ,e′(yt))
Zℓ = Tℓ(Xℓ) for 1 ≤ ℓ < L
Xℓ+1 = Zℓ,ht = F(zLt )

Attention Block A : RT×D →R
T×D

A(X) = f∆D−1

(
Q(X)K(X)⊤

)
V (X)

U=Q(X)K(X)⊤ ∈RT×T .
WQ

i ,WK
i ∈R

d×dk , W V
i ∈R

d×dv

WO ∈Rhdv×d often dk = dv = d
h

Masked Attention Block
A(X,M) = softmax(Q(X)K(X)⊤ ⊙
M)V (X)
Mi,j = I[i ≤ j] +−∞I[i > j]

Positional Enc fpos : N→R
D

e′pos(yt)=e
′(yt) + fpos(t)

e′pos : Σ→R
D

MH-A
fH : RT ·H×D → R

T×D MH-A(X) =
fH (concat0≤h<H (softmax
(Qh(X)Kh(X)⊤)Vh(X)))
Layer Norm LN : RD →R

D

LN(x;γ,β) = x−x√
σ2(x)+ϵ

⊙γ +β

FFN
FFN(x) = max(0,xW1 + b1)W2 + b2
Tightness of Transformers
Any transformer using soft atten-
tion is tight (because its layers are
continuous and the set of possible
inputs to the first layer is compact,
making enc bounded).
Expressiveness of Transformers
Let pLN be an n-gram language
model. Then, there exists a trans-
former T with L(pLN ) = L(T ).
6 Tokenization
Tokenizer
A tokenizer model from Σ∗ to ∆∗

is a pair of stochastic maps T =
(τ,κ), τ : Σ∗ 7→ ∆∗,κ : ∆∗ 7→ Σ∗

BPE
Input: Σ, C = {x(m)}Mm=1 ⊂ Σ∗. Re-
turn: ∆, t : Σ∗→ ∆∗, Initialize ∆ to
Σ, Find the most frequent merge
in C, where a merge m is a conca-
tenation of two elements in ∆, so
now ∆← ∆∪m.
Suprious Ambiguity
aaba→ |a|a|b|a| or |aa|b|a|



Pushforward
p(x) =

∑
y∈∆∗

y∈t−1(x)
p∆k (y)

t−1(x) = {y|y ∈ ∆∗, t(x) = y}
7 Sampling
Ancestral Sampling
1. Locally normalize.
2. Sample yt ∼ p(· | y<t), stop
when yt = EOS.
May not halt → set max string
length.
Greedy
xi = argmaxx∈Σ∗ log(x|x1 . . .xi−1)
Sampling Adaptors
To calibrate p we can postpro-
cess probabilities by a function
α : ∆|Σ|−1→ ∆|Σ|−1.
Top-K Sampling
Set p(yt | y<t) = 0 for all but the K
most probable tokens, and renor-
malize.
Nuclues Sampling
Only take top p% of probability
mass.
8 Transfer Learning
ELMo
Fwd & Bwd LM using L LSTM
layers. The ELMo representati-
on for a token yt is ELMotask =
γ task∑L

l=0 s
task
l hLM

tl where stask
l ≥

0, hLM
tl = (

−→
h LM

tl ,
←−
h LM
tl ).

BERT (encoder)L = LMLM +LNSP
LMLM(θ) =

∑N
i=1

∑T
t=1

logMLM(y(i)
t |y

(i)
<t ,y

(i)
>t ;θ)I{y(i)

t = M}
9 Parameter Efficient Fine-Tuning
BitFit
Q(x) = Wqx+bq
h4 = GELU(W2 ·h3 +b2)
Diff Pruning
θFT = θLM + δ. Encourage δDif f
to be sparse by regularization by
a differentiable approximation to
the L0-norm penalty as ||δDif f ||0.
Adapters
Insert bottleneck MLPs after each
sublayer (MHA and FFN).
h← h+ f (hWdown)Wup

LoRA
Replace weight matrices W ∈
R
d×r with W ← W + β

bAB where
A ∈ R

d×b and B ∈ R
b×r are ran-

dom matrices and β is a constant
in b.
Nparam = NH(3b(d + r) + 2bd)
10 Prompting
Objective
ẑ = search

z∈Z
P (ffill(x′ ,z);θ).

Discrete Prompts
Use the middle words/paths
as templates in the form of
[X] middle words [Z], transla-
ting the prompt into another lan-
guage and back, use a thesarus
to replace words, training a text
generation model for generating
prompts
Prefix Tuning
Prepends a sequence of con-
tinuous task-specific vec-
tors to the input while kee-
ping the LM parameters fro-
zen. maxφ logP (y|x;θ;φ) =
maxφ

∑
yi

logP (yi |h<i ;θ;φ)
Self-Consistency
Generate multiple reasoning
paths and selecting the most
frequent final answer.
11 Vision Language Models
Vision Encoders
Pretrained OD then use visu-
al features as well as location
features [x1, y1,x2, y2,w,h,w × h];
CNN; Image Transformers Crea-
te image tokens: Split image in-
to image patches, map them into
vectors and linearly project them
to patch embeddings. Add a lear-
nable special token [CLS]
Multimodal Fusion
Fusion encoder takes both v =
{v1, · · · ,vM} and w = {w1, · · · ,wN }
as input, and learns contextua-
lized multimodal representati-
ons ṽ = {ṽ1, · · · , ṽM} and w̃ =
{w̃1, · · · , w̃N }. merged attention
(concat v,w), co-attention v,w
are fed into different Transformer

blocks independently.
Masked Language Modelling
LMLM(θ)
= −E(w̃,ṽ)∼D logPθ(w̃m|w̃\m, ṽ)
Image Text Matching
LITM(θ) = −E(w̃,ṽ)∼D [y logsθ(w̃, ṽ)+
(1− y) log(1− sθ(w̃, ṽ))])
Image-Text Contrastive Learning
si2ti,j = v⊤i wj , s

t2i
i,j = w⊤i vj

Li2tITC(θ) = − 1
N

∑N
i=1 log

exp(si2ti,i /σ )∑N
j=1 exp(si2ti,j /σ )

Lt2iITC(θ) = − 1
N

∑N
i=1 log

exp(st2ii,i /σ )∑N
j=1 exp(st2ii,j /σ )

Masked Image Modelling
LMIM(θ) = E(w̃,ṽ)∼DPθ(ṽm|ṽ\m,w̃)
12 RAG
TF-IDF
tf-idf(t,d,D) = tf(t,d)× idf(t,D)
tf(t,d) = log(1 + freq(t,d))

idf(t,D) = log
(

|D|
|d∈D:t∈d|

)
Scoring
score(q,d) =

∑
t∈q

tf(t,d)
|d|

Dense Retrieval
sim(q,d) = enc(q)T ·dec(d).
L(qi ,d

+
i ,d
−
i,1, ...,d

−
i,n) =

− log esim(qi ,d
+
i )

esim(qi ,d
+
i )+

∑n
j=1 e

sim(qi ,d
−
i,j )

kNN-LM
Store all embedded prefixes and
their following words in a databa-
se. At inference time, retrieve the
kNN of a prefix, normalize expo-
nentiated distances to a pron distr
pξ over words. Then sample from
a convex combination of pξ and
the LM.
Dynamic Gating: Set the weigh-
ting of distributions depending
on the prefix.
13 RLHF
1. Collect a dataset of instructi-

ons+answers and train a super-
vised baseline model.

2. Produce a dataset of compari-
sons of different answers given
by the baseline model, score

them manually and train a re-
ward model.

3. Use PPO to fine-tune a LM (the
policy) using the reward mo-
del.

14 Callibration
ECE =

∑M
m=1

|Bm|
M |acc(Bm) −

conf(Bm)|
acc(Bm) = 1

|Bm|
∑

i∈Bm
I(ŷi =

yi), conf(Bm) =
∑

i∈Bm
p̂i

15 Security & Adversarial examples
Greedy Coordinated∇-Descent
1. Find top-k token substitutions
according to gradient 2. Pick B
substitutions at random across all
suffix tokens 3. Evaluate the loss
of all B candidates and pick the
best.
Watermarking
Bias LLM away from true
p(si+1|si) in a subtle but verifiable
way.
16 Prompt Injections
Indirect Attacks
1. The adversary plants indirect
prompts on a source. 2. LLM re-
trieves the poisoned prompt.
Defenses
Escape data; Detect with 2nd
LLM; Separate pipelines; instruc-
tion hierarchy; quarantined LMs.
17 Data poisoning, backdoors and

model stealing
Poisoning Wikipedia
1. Estimate when each article was
snapshot in the past dump. 2. Poi-
son each article right before it.
Defenses
Integrity Check (but many FP),
randomize snapshot times and
keep edits longer than some time
only.
Distillation
Train your own LLM to replicate
the behavior of the original LLM.
Cryptanalysis
Dream of viewing LLM operati-
ons as cryptographic mechanisms
and precisely recovering every-
thing.

Recovering hidden dim
LLM(xi) = yi = ziW⊤, so
Y = ZW⊤, Y ∈ R

n×V , Z ∈ R
n×h,

W⊤ ∈Rh×V , h is rank of Y. Can re-
cover part of weights using SVD
Y = UΣV⊤, U ∈ R

n×h,Σ ∈ R
h×h,

V⊤ ∈ R
h×V , where V⊤ are the

weights up to an h× h transform.
In practice, you only get top-k to-
kens, you can attack OpenAI’s via
logit_bias by repeatedly setting
the top-k to −∞ and push other
values upwards.
18 Privacy
Federated Learning
Central server aggregates gradi-
ent updates from multiple clients.
Issue: gradients are not private!
Given a gradient g find x1 . . .xB to
minimize ∥g − 1

B

∑B
i=1∇θL(fθ(xi))∥

Weight-Trap Attack
Server sends client model fθ s.t.
∇θL(fθ(xi)) = xi
Differential Privacy
An algorithm M is ε-differentially
private if for any “neighboring”
databases D1,D2 that differ in
a single element, and any out-
put S we have: P [M(D1) ∈
S] ≤ exp(ε)P [M(D2) ∈ S] Post-
Processing: If M is ε-DP, then
f (M) for any function f is also
ε-DP.
Composition: If M1 is ε1-DP and
M2 is ε2-DP then f (M1,M2) is
(ε1 + ε2)-DP.
Sensitivity
∆f = max|f (D1) − f (D2)|, release
y ∼ Laplace(f (D), ∆fε )
Noisy Gradient Descent
g = 1

k

∑
xi∈B∇θL(fθ;xi) +N (0,σ2I)

giving us a relaxed notion of DP
with prob 1− δ. Bound sensitivity
by, clipping gradients to norm C.
The entire training algorithm is
then ε′-DP for some ε′ > ε. Sub-
sampling amplifies privacy: the
gradient is ≈ (kε)/(|D |)-DP w.r.t.
neigboring datasets.The final DP
budget is in (O)(

√
Nε).


